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exploration of the task and data levels forms of parallelism simultaneously, and the use of the parallel Kahn process
network (KPN) model of computation and the YAPI programming C++ runtime library. To demonstrate the
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1. Introduction
The H.264/AVC has been designed with the goal of
enabling significantly improved compression
performance relative to all existing video coding
standards [1]. Such a standard uses advanced
compression techniques that in turn, require high
computational power [2]. For a H.264/AVC encoder
using all the new coding features, more than 50%
average bit saving with 1–2 dB PSNR video quality
gain are achieved compared to previous video encoding
standards [3]. However, this comes with a complexity
increase of a factor 2 for the decoder and larger than
one order of magnitude for the encoder [3].
Implementing a H.264/AVC video encoder represents a
big challenge for resource-constrained multimedia
systems such as wireless devices or high-volume
consumer electronics since this requires very high
computational power to achieve real-time encoding.
Actually, using a single processor to real time encode
H.264 bit streams may require a high performance,
high frequency super scalar processor. Such a choice is
not suitable for embedded systems that have strict
power and cost constraints. For such a case, it may be

probably necessary to use some kind of
multiprocessor approach to share the encoding
application execution time between several
processors.

Prior to the multiprocessor implementation, the
sequential H.264/AVC reference code has to be first
distributed using appropriate high level parallel
programming model of computation. To do so,
several multiprocessor and multi-threading encoding
systems and parallel implementation methodologies
have been proposed and discussed in many previous
studies [4, 5, 6, 7, 8 and 9]. Based on the performance
results obtained in these previous works, and given
our concern with resource constrained devices, we
developed in a previous work a new high-level
independent target-architecture parallelization
approach [10 and 11] based on the parallel
programming models of computation and
simultaneous exploration of the two predominant
concepts of parallelism; the data-level partitioning
and the task-level splitting and merging. The goal of
this approach is to derive in a structured way a
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parallel model of the encoder with the best
computation and communication workload balance.

After a brief presentation in section 2 of the main
innovations of the H.264/AVC standard along with its
performance and complexity analysis, this paper first
discusses in section 3 the main video standards
previous parallelization studies, and then reviews the
key characteristics of our proposed parallelization
approach. Based on this parallelization approach, a
starting parallel model of the H.264/AVC reference
encoder is proposed in section 4. The implementation
of this model is performed according to an appropriate
programming strategy. Given the high complexity of
the H.264/AVC standard, details about implementation
issues are discussed to cope with related memory
management problems. According to the
communication and computation concurrency
properties of the implemented starting model, section 5
of the paper will consider concurrency optimizations
using task-merging and data-partitioning forms of
parallelism. This will lead to an optimized parallel
model with the best computation and communication
workload balance. Performance evaluation of this
model targeting multiple multiprocessors platforms is
discussed in section 6 and will demonstrate the
effectiveness of the proposed parallel model in
comparison to previous parallel implementations of the
standard.

2. Overview of the H.264/AVC video
encoder

An important concept in the design of H.264/AVC is
the separation of the standard into two distinct layers: a
video coding layer (VCL), which is responsible for
generating an efficient representation of the video data;
and a network adaptation layer (NAL) [1] which is
responsible for packaging the coded data in an
appropriate manner based on the characteristics of the
network upon which the data will be used. This paper
is concerned with the VCL layer.

2.1 The Coding layer Block diagram
The block diagram of the video coding layer of a
H.264/AVC encoder is presented in figure1. This
figure includes a forward path (left to right) and a
reconstruction path (right to left) [1].

Figure1. H.264 /AVC video encoder block diagram

An input frame or field Fn is processed in units of a
macro-block (MB). Each MB is encoded in intra or
inter mode and, for each block in the MB, a
prediction PRED (marked ‘P’ in figure1) is formed
based on reconstructed picture samples. In Intra mode,
PRED is formed from spatially neighboring samples
in the current slice that have previously been encoded,
decoded and reconstructed (uF’n in the figure1 note
that unfiltered samples are used to form PRED). The
encoding process chooses which and how
neighboring samples are used for Intra prediction,
which is simultaneously conducted at the encoder and
decoder using the transmitted Intra prediction side
information [12].

In Inter mode, PRED is formed by motion-
compensated prediction from one or multiple
reference picture(s) selected from the set of reference
pictures. In the figure1, the reference picture is shown
as the previous encoded picture F’n-1 but the
prediction reference for each MB partition (in inter
mode) may be chosen from a selection of past or
future pictures (in display order) that have already
been encoded, reconstructed and filtered. The
prediction PRED is subtracted from the current block
to produce a residual difference block Dn that is
transformed (using a block transform) and quantized
to give X, a set of quantized transform coefficients
which are reordered and entropy encoded. The
entropy-encoded coefficients, together with side
information required to decode each block within the
MB (prediction modes, quantization parameter,
motion vector information, etc.) form the compressed
bit stream which is passed to a Network Abstraction
Layer (NAL) for transmission or storage.

As well as encoding and transmitting each block in a
MB, the encoder decodes (reconstructs) it to provide
a reference for further predictions. The coefficients X
are scaled (Q-1) and inverse transformed (T-1) to
produce a difference block D’n. The prediction block
PRED is added to D’n to create a reconstructed block
uF’n a decoded version of the original block (u
indicates that it is unfiltered). A filter is applied to
reduce the effects of blocking distortion and the
reconstructed reference picture is created from a
series of blocks F’n.

2.2 Main innovations in comparison to
previous standards
The basic functional elements of H.264/AVC
presented in figure1 represent a similar set of the
generic DPCM/DCT [1] coding and decoding
functions of earlier standards. The H.264 provides
higher coding efficiency through added features and
functionality that in turn entails additional complexity.
Many previous studies have presented a summary of
the most relevant key features for the performance of
this standard [12], [13], [14], [15]. These features
concern the motion compensation model, the intra-
frame prediction, the concept of Bi-predictive (B)
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slices, the T transform and the entropy coding methods.

Here we present a summary of the most relevant key
features for the motion compensation model. This
model supports the use of multiple reference frames for
prediction with a weighted combination of the
prediction signals. Also, it introduces variable block-
size motion compensation with small block sizes that
range from 16x16 up to 7 modes including 16x8, 8x16,
8x8, 8x4, 4x8 and 4x4 pixel blocks. Motion vectors can
be specified with higher spatial accuracy with quarter-
pixel and eighth-pixel instead of half-pixel accuracy. In
order to estimate and compensate fractional
displacements, the image signal of the reference image
has to be generated on sub positions by interpolation.
Pixel interpolation is based on a finite impulse
response (FIR) filtering operation: 6 taps for the
quarter resolution and 8 taps for the eighth one [12]. A
rate-distortion (RD) Lagrangian technique optimizes
both motion estimation and coding mode decisions.
Moreover, an adaptive deblocking filter is added to
reduce visual artifacts produced by the block-based
structure of the coding process [11]. For the intra-frame
prediction, in contrast to previous video coding
standards where prediction is conducted in the
transform domain, prediction in H.264/AVC is always
conducted in the spatial domain by referring to
neighboring samples of already coded blocks [13].
Two classes of intra coding modes are supported.
When using the INTRA-4x4 classes, each 4x4 block
utilizes one of nine prediction modes involving linear
combinations of the samples. For the INTRA-16x16
classes, four prediction modes are supported [1].

2.3 Performance and computing time
complexity analysis
The complexity of the H.264/AVC encoder application
depends on the algorithm, the encoding option tools,
the input sequences and the architecture in which it is
implemented. The encoding option tools are
representative of the standard innovative features.
When combining the standard new coding features, the
implementation complexity accumulates, while the
global compression efficiency becomes saturated [3].
To find an optimal balance between the coding
efficiency and the implementation cost, a proper use of
the H.264 new tools is needed to maintain the same
coding performance as the most complex reference
configuration (where all the coding options are on)
while considerably reducing complexity.

To get the most efficient configuration, we performed
in a previous work [16] a high level performance and
complexity analysis of the major encoding tools on
performance and computing time complexity. The
experiments have been performed on a General-
Purpose Processor (GPP) 1.6 GHZ INTEL Centrino
platform using the JM 10.2 software reference version
[17] with a main profile @ level 4. In comparison with
the most complex configuration, one order of
magnitude in complexity reduction has been achieved

with less than 10% average bit rate increase for all
the CIF and QCIF used test video sequences [16].
However and even for the very low bit rate QCIF
“bridge far” sequence, the associated complexity in
frames per second (fps) to compute the encoding
algorithms on the GPP platform is of 2.16 fps. Even
with this configuration offering an optimal trade-off
between coding efficiency and implementation
complexity, we are still very far from a real time
performance of 25 frames per second.  Implementing
such an encoder represents a big challenge for
resource-constrained multimedia systems since this
requires very high computational power to achieve
real-time encoding.

3. Parallelization of the H.264/AVC
video encoder

To speedup the computing of this encoder, a
multiprocessor implementation is probably needed.
Several works have been elaborated for the
parallelization of video coding standards to improve
their execution performances and to achieve real time
encoding or decoding. This section first reviews
related parallelization works, and then presents our
high-level independent target-architecture
parallelization approach that is used to get an
optimized parallel model of the H.264/AVC encoder
with the best computation and communication
workload balance.

3.1 Related works
Many parallel specifications of MPEG video
encoders [4 and 5] have been performed for many
distributed multi-core systems. For these
specifications, a very coarse grain communication
level, namely the Group Of Pictures GOP level, is
used. This communication granularity has been
justified by the little data dependency between
processes acting on separate Group Of Pictures
(GOP). This is due to the light data correlation from
one GOP to another for the studied MPEG standards.
For an embedded multiprocessor System on Chip
(SoC), the GOP communication granularity is not
appropriate given the limited on-chip memory
resources. A more fine grain communication
granularity should thus be selected for an embedded
multiprocessor SoC implementation.

Typically, different types of data dependencies are
built into the H.264/AVC video standard. These
dependencies limit the concurrency space for a
processes network using a task-pipelining
parallelization method. In [6], it is proved that such a
pipelining method is not enough appropriate
particularly for the H.264/AVC since this standard
presents very important data dependencies given the
high spatial and temporal correlation between frames
and macro-blocks of the same frame. For this, the use
of data-level parallelism has been actually more
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highlighted than the task-level pipelining. Using
different data partitioning techniques, several parallel
specifications of the H.264/AVC encoder have been
proposed at a slice, MBs row, and MBs region
granularity levels [7, 8, and 9]. Chen in [7] used a data
partitioning technique to get parallel algorithms of a
H.264/AVC encoder at slice granularity level based on
Intel Hyper-Threading architecture. In this work, a
frame is split into several slices, which are processed
by multiple threads running on a system of 4 Intel
Xeon processors with Hyper-Threading technique.
Using this method, additional bit rate overheads have
been generated. This is because of two main reasons:
first, splitting frames into slices increases the bit
information for the slice header, second motion
estimation and compensation are not used for macro-
blocks (MBs) between slices, which increases bits for
the transformed coefficients.

To cope with these problems, other parallelization
works have been oriented towards data splitting at the
MBs row and MBs region granularity levels [8, 9]. For
example, in [8] and based on the analysis of data
dependency in the H.264 standard, input video data are
mapped onto different processors at MBs row level.
Using the Wave-front parallelization technique [8],
each frame is first partitioned into MBs rows. Given
that a MB can’t be processed until its left neighbor in
the same MB row is encoded, all MBs in the same MB
row are then processed by the same process to reduce
the data workload exchanges between processes. In
addition, in [9] Sun selected to parallelize a
H.264/AVC encoder using data parallelism at a MBs
region level. Based on the analysis of different types of
the encoder data dependencies, he proposed to split a
frame into several MBs regions in which each region is
composed by several adjoining columns of MBs. After
that, these MBs regions are mapped onto different
processes using the Wave-front technique. The data is
exchanged appropriately between processes according
to the analyzed data dependencies. These two last data-
partitioning-based works [8, 9] showed that the
computing performance and compression speed are
better compared to the others already presented works
and improved linearly with the number of the used
processors. However, for these parallel specifications,
the decomposition of tasks depends of the number of
the simulated processors and the computation workload
is observed after software simulation on a
multiprocessor platform.

3.2 The proposed parallelization approach
For a H.264/AVC encoder, it is observed that the intra
prediction and inter prediction modules are two
independent components which can operate
concurrently. For a more efficient parallelization, a
task-level parallel execution of the most time-
consuming computational components should be
exploited. The goal of this step is to extract the
available task-parallelism from the application by
splitting compute nodes as far as possible to get a valid

parallel model. For an optimal design flow, our aim is
to provide a parallel specification which forms a good
starting point for mapping onto different systems-on-
chip platforms. To do so, we proposed in a previous
work a high-level independent target-architecture
parallelization approach [11] to get an optimized
parallel model of the encoder suitable for embedded
SoC implementation. The key characteristics of the
proposed approach is the use of the parallel streaming
programming models of computation, the selection of
a fine-grain communication at a Macro-Block
granularity level, and the exploration of the data and
task levels forms of parallelism simultaneously,.

Among the existent streaming models of computation
(MoC), our approach is based on the use of the Kahn
Process Network (KPN) [18] model implemented by
the Y-chart Applications Programmers Interface
(YAPI) C++ run time library [19]. The KPN MoC
assumes a network of concurrent autonomous
processes that communicate in a point-to-point
fashion over unbounded first-in-first-out (FIFO)
channels. Read actions from these FIFOs block until
at least one data item becomes available. It is
demonstrated that the execution of a Kahn Process
Network is deterministic and independent of process
interleaving, meaning that for a given input always
the same output is produced and the same workload
is generated, irrespective of the execution schedule.
For this reason, an application programmer can
combine processes that represent signal processing
functions into process networks without specifying
their order of execution. Moreover, a system designer
can exploit the concurrency between the processes by
using processing elements that operate in parallel.
Finally, the key characteristic of the KPN model is
that it specifies an application in terms of distributed
control and distributed memory which allows
mapping the application onto a multiprocessor
platform in a systematic and efficient way.

The second considered characteristic of our proposed
approach is the granularity at which data is
communicated. The optimal communication
granularity between tasks needs to be correct
evaluated in order to prevent tasks from long waiting
and to avoid spending too much time on
synchronization. As presented in section 3.1, many
previous task-level parallelization works have been
performed for different encoding applications. For
these studies, The GOP, slice or frame level
communication granularity has been used. It has been
shown that for embedded System-on-Chip
implementation, neither the GOP or frame level
granularities are viable. For such systems, the best
granularity may be the fine grain level, i.e. at the
Macro block (MB) level. The use of such a
granularity requires only the current and reference
frames to be stored. Each frame is considered as the
current workload, and the encoding process of each
frame is divided between the processors.
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The availability of many processing cores speeds-up
the system execution by introducing several types of
parallelism. The predominant forms of parallelism are
Data Level Parallelism (DLP) and Task Level
Parallelism (TLP). In our case, these two forms of
parallelism are used to get an efficient parallel
implementation of the encoder. The DLP has perhaps
been the most commonly used form of parallelism.
This consists in extracting from the original source
code regular data (vectors, matrices, etc.) on which the
same sequence of instructions are applied. The TLP
consists in partitioning the code by functionality.
Optimized task-level decomposition shall regroup
some system functionalities to get a balanced task
computation workload. The effective implementation
of a TLP parallelization requires a data dependency
analysis between tasks and an accurate study of their
execution orders from the original sequential code. For
our case, simultaneous exploration of the two
predominant DLP and TLP forms of parallelism are
used. This means that communication and computation
workload analysis are used to provide a global
guidance when optimizing concurrency between
processes. In general, when the concurrency
bottlenecks are identified, task and data levels splitting
and/or merging are performed for better distributing the
computing workload over the processes. For the most
computational-expensive tasks, data splitting is
proposed for a better concurrency optimization [11].

4. The starting parallel specification of a
H.264/AVC video encoder

The proposed approach discussed above has been used
to derive in a structured way an optimized parallel
specification of the H.264/AVC encoder. This has been
performed according to two steps. In the first step, a
starting parallel KPN model is obtained by task-level
decomposition. The second step considers concurrency
optimizations of the starting model using task-merging
and data-partitioning forms of parallelism to derive a
model with the best computation and communication
workload balance. This section will discuss some of the
aspects and issues used for the development starting
model.

4.1 The first starting KPN/YAPI parallel model
The Task Level Parallelism (TLP) is first considered.
The goal of this step is to extract the available task-
parallelism by splitting compute nodes as far as
possible to get a starting valid parallel KPN model of
the encoder. For this case, the block diagram of the
figure1 has served as a starting point for extracting the
task-level parallelism. The proposed model is given
figure 2.

The “VidIn” process shown in figure2 represents the
input of the encoder. This process is responsible for
collecting the video data (YUV frames) from the input
file (video sequence with YUV format), the frame

width and height dimensions, the total frame number,
and the frame rate information. Each frame is divided
into “YUVMB” MBs of 16x16 pixels. The “Dmx”
process forwards these macro-blocks to the “Sub”,
“Mec”, and “Intra-Pred” processes. The “Sub”
process reads the predicted “PredYUVMbToSub”
MB, subtracts it from the current “YUVMbToSub”,
and sends the residual data “YUVMbToDCT” to the
“Dct_Dec” process to perform associated transforms,
respectively on the Y luminance and the UV
chrominance MBs. These MBs are first arranged into
blocks of 4x4 pixels. Each 4x4 block is first
transformed into DCT coefficients using an
appropriate integer transform then Q quantized and
sent as “QuanMb” to the “Vlc” process. The
“Dct_Dec” is also responsible for decoding
“QuanMb” via a rescaling and an inverse transform
and transmitting the “DecMb” to the “Add” process.
The “Vlc” receives the quantized DCT coefficients
“QuanMb”, performs the CAVLC entropy coding
and transmits the resulting “BitStreamFrm”
compressed bit stream to the “VidOut” that sends the
H.264 compressed data bit stream to the output file
(.h264).

Figure2. Starting parallel H.264/AVC KPN model

The “Add” process uses the residual decoded
“DecMb” MBs and the best inter or intra predicted
MBs “PredYUVMbToAdd” to reconstruct the
previously encoded “RecMbToIntra” (but un-filtered)
MB. Using the current MB “YUVMbToIntraPred”
and the reconstructed previously encoded MB
“RecMbToIntra”, the “Intra_Pred” first maintains the
“RecMbToIntra” MB in the reconstructed frame, then,
performs an intra-prediction on each MB using 9
prediction modes for the 4x4 luma blocks, 4
prediction modes for the16x16 luma blocks, and 4
modes for the 8x8 chroma blocks. The best intra-
prediction mode cost obtained and the associated
predicted MB “BestIntraPred” are sent to the
“Mode_Dec” process.

Parallel to the intra-prediction process, each “Dmx”
output “YUVMbToMotionEst” current MB is inter-
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predicted using one or more reference frames by the
“Mec” process. This process is also responsible for
maintaining the reference frames memory. The list of
past frames is generated through the filtered reference
MBs received as an output of “DB_Filter” process. The
“DB_Filter” receives the reconstructed decoded
“RecMbToFilter” MBs (only these used as reference)
from the “Add” process and information about the
references indexes and the motion vectors of this MB
(already inter-predicted) from the “Mec” process. Then,
filtering is applied on each reconstructed previously
encoded MB (before storing the macro-block for future
predictions) to reduce blocking distortions. The best
inter-prediction mode cost obtained along with the
corresponding predicted MB are sent as a
“BestInterPred” structure to the “Mode_Dec” process.
There are also information about the frame motion
vectors and its reference indexes which are copied to
the “Vlc” process via the “RefIdxMvToVlc” channel.
Using the best intra-prediction and inter-prediction
modes, the “Mode_Dec” process selects the best
optimal “PredYUVMbToSub” predicted MB of them
and transmits it to the “Sub” process.

4.2 The KPN/YAPI programming strategy
For the implementation of the parallel model of figure2,
we started with the sequential C reference code of the
fixed configuration defined in section 4. The sequential
code is modified and structured by hand to describe the
KPN in C++. Each Kahn process is described by a set
of associated functions extracted from the original C
code. The inter process communication is performed
using solely the YAPI I/O FIFO primitives. Using
global variables is not allowed with a KPN model [18].
Thus, to ensure inter process communication, all the
global shared variables used in the sequential reference
code are grouped into associated data structures for
communication over FIFO channels.

For efficient task-level decomposition, a YAPI
programming strategy is proposed. This strategy is
based on the analysis of the role played by each
process in the proposed KPN model. Given this, all the
process related functions and data structures are
extracted from the sequential source code. The steps of
the used strategy are exactly as follows. (1) Definition
of the code of each process including all related
functions, local and global data structures. (2) Once the
extracted code is compiled with no errors, we precede
to its reimplementation using solely the YAPI C++
syntax. Global variables are converted into local
variables transmitted over FIFO communication
channels. (3) Finally, the behavior validation is
performed. This step consists in checking for each
process of the model that the associated separate code
carries out the same computation with the same
functionalities as the old sequential source reference
code.

4.3 Important YAPI implementations issues

For the effective YAPI implementation of the starting
KPN model, the following issues are considered to
deal with the reference frame memory management;
the large inter process data structures, the specialized
function redundancy and the management of the large
local variables.

4.3.1 Reference frame memory management
For the model of figure2, there are some processes
exchanging Macro Block (MB) data streams, but
there are others like the motion estimation
compensation “Mec” process that is accessing data
from reference frames. For a “Mec” process, a full
reference frame has to be transmitted over a
dedicated FIFO Channel. First, transmitting full
reference frames from the “DB_Filter” process to the
“Mec” process is considered. In this case, for low
resolution QCIF video format, about 38 Kilo bytes of
data are needed for each reference frame. For the
used encoding configuration, the reference frame
number is fixed to 3. This results in a minimum of
115 Kilo bytes of needed FIFO size memory for
transmitting the reference frames between “Mec” and
“DB_Filter” processes. Typically, this is not practical,
particularly for higher resolution video frames. Given
this and as using global shared variables is not
allowed, we opted for the “Mec” process to handle
locally the reference frames and to maintain the
memory of past frames. After having received all the
filtered intra MBs, the “Mec” starts the inter
prediction of the P/B-type MBs one by one starting
from the left. In this case, a problem of processing a
P/B-type MB would persist: the “Mec” process needs
the “FilteredRefMb” information from the
“DB_Filter” that can not be processed before having
received the “RefIdxMvToFilter” data from the
“Mec” process, as shown in our KPN model of
figure2.

To resolve these dependencies of reading the filtered
MBs “FilteredRefMb”, we first proposed to proceed
as follows. Once one P/B-type MBi is read, the
“Mec” process remains blocked until the filtered
reference “FilteredRefMb” MBi-1 of the previous
inter-prediction is read. Then, the “Mec” process
stores the obtained filtered reference MBi-1 in the
associated reference picture, performs the motion
estimation and compensation of the current MBi, and
then transmits the motion vectors data
“RefIdxMvToFilter” to the “DB_Filter” to filter these
previously inter-predicted MBi. Such a solution
increases the overhead and the data dependencies
between the pipelined tasks, and considerably
decreases the effective parallelism gain. To cope with
this, we proposed to delay reading the filtered MBs of
currently processed “Mec” frame. For this case, just
before starting the inter prediction of the first MB of
the next frame, the “Mec” process starts reading  the
filtered MBs of the previous frame, then reorders the
list of reference frames DPB (Decoded Picture
Buffer).  However, such a solution is not convenient



40

because the FIFO channel connecting the “Mec” to the
“DB_Filter” processes has to support for a minimum of
one frame size. Finally, to resolve the entire problem,
we modified the implementation of th “Mec” process
as follows. After inter-predicting one row of MBs
beginning from the left and before processing the first
MB of the next row, the “Mec” process reads the
filtered MBs of the previously encoded row, and stores
them in an associated local reference picture. Once a
reference frame is entirely read, it will be added in the
DPB list of past frames.

4.3.2 The inter process communication data
structures
For each inter process communication, we associated
for a needed data a sort of token data structure that will
be transmitted over a dedicated FIFO channel. As
previously discussed, the largest structure used is the
Macro-Block data structure. Such a data structure is
transmitted between the “VidIn” & “Dmx”, “Dmx”
& ”Sub”, “Sub” & ”Dct_Dec”, “Dct_Dec” & ”Vlc”,
“Dct_Dec” & ”Add”, “Add” & ”DB_Filter”, “Dmx”
& ”Mec”, and “Dmx” & ”Intra-Pred” processes. This
structure is formed essentially by the Y luminance and
the UV chrominance data blocks, the MB
horizontal/vertical positions, the type of MB (I, P, or
B), AC & DC coefficients, “is or is not reference”
status, the neighboring MBs positions and addresses,
and other information used by the “Mec” and “Intra-
Pred” processes. In addition to data transmitted
between processes via dedicated communication
channels, some constant parameters are also needed.
For example, the Sequence Parameter Set (SPS) is a
constant parameter used for the whole sequence and
the Picture Parameter Set (PPS) is a constant needed
for each frame. Exchanging such constant parameters
over dedicated FIFOs or adding them to associated
token data structures will add significant overhead to
the system. For this case and given the C++ concepts
that characterize the YAPI run-time environment, we
opted for defining such constant parameters as private
members in the YAPI class of the whole Process
Network. These private members will be used by any
Process Class of the model without needing to be
exchanged over associated channels.

4.3.3 Specialized functions Redundancy
Using the original C source code of the JM10.2
reference version [17], there are particular specialized
functions used by multiple processes. For example, the
“GetNeighbour()” function is used to gather positions
information on the neighboring Luminance and
Chrominance blocks. This function and all its children
are needed by all the “Intra-Pred”, the “Mec”, and the
“Vlc” processes. For the use of these specialized
functions, the first option consists in their
implementation into a dedicated specialized process
along with a dedicated FIFO to each associated process.
However, implementing this option leads to a
maximum communication overhead and an important
data dependency between processes. To minimize this

overhead, we opted for a redundant implementation
of all the specialized functions at the cost of more
computing burden of the associated processes.

4.3.4 Large local variables management
Using the YAPI development framework, a separate
private stack space is allocated for each process of
the network. This stack is used to store the
intermediate results, the local variables, and all
functions call management. For the case of the
H.264/AVC encoder, there are several large local
video data structures that are needed to be allocated
on the stack. As the total amount of stack space of
each process is fixed to 64 Kilo bytes, this may be
insufficient and may result in a “stack overflow” [20].
Such a stack overflow will lead to an access violation
that causes the program to be killed and a core dump
to be generated [20]. To cope with this, all the stack
large data structures have been allocated dynamically
on the heap using the “malloc” and “new” dynamic
allocation services.

4.4 Performance evaluation of the starting
KPN/YAPI model
The parallel KPN model of figure2 is implemented
using the YAPI multi-threading programming
environment. The implemented model is first
validated by high level functional simulation. The
correctness of the parallelized code is proved by
comparing both execution results of sequential and
parallelized code using the same test benches. For a
QCIF “Bridge close” sequence of 13 YUV frames,
communication and computation workload analysis
has also been considered to identify the potential
bottlenecks and thus to provide a global guidance
when optimizing concurrency between processes.
The obtained communication workload results are
given the next figure 3

Figure3. Communication workload of the starting parallel
model

This figure describes the total number of Write
tokens (Wtokens) and Read tokens (Rtokens)
exchanged over all the used data channels of the
network. The “Tsize” for one token represents the
average amount of data communicated per call
between two processes. For the QCIF “Bridge close”
13 frames sequence, each frame consists of 99 MBs
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of 16x16 pixels. One MB is representative of
Luminance (Y) and Chrominance (UV) data in a 4:2:0
format. One MB is constituted with two 8x8 blocks of
chrominance, and one 16x16 block of luminance. For
the implemented YAPI model, we have 1287
(99*13frames) intra and inter MBs communicated over
the “YUVMB” FIFO channel from the “VidIn” process
to the “Dmx” process. Given the “Tsize” of one token
(40752 of 1 byte size), the total bytes number
communicated over this “YUVMB” channel is
1287*40752*1 bytes. For the “YUVMbToMotionEst”
channel, there are only 1188 inter predicted and
bidirectional MBs sent from the “Dmx” process into
the “Mec” process. Given the results of figure3, it is
clear that the communication workload is somewhat
unbalanced for this starting computational network.
The very large exchanged data structures are outputs of
the “Dmx”, “Sub”, “Dct_Dec”, and “Add” processes.
The remaining tokens exchanged between the others
tasks are all balanced.

A computational workload analysis has been also
considered using the “Gprof” GNU [21] profiling tool.
The obtained results are reported in figure 4 in terms of
the CPU time percentage spent in the process execution.
Given the profiling results of figure4, it is clear that the
computational workload of the model is too much
unbalanced. Some processes have negligible
complexity; others especially the “Mec” is very
complex. Although we fixed the optimal parameters
configuration using a fast full search algorithm, a
search range of 8, 4 variables block sizes, and only 3
reference frames [16], the “Mec” process of the model
is still a very computational-expensive with more than
50% of the total computing time complexity.

Figure4. Parallel computational profiling of the first
proposed model

Finally it is clear, using the obtained communication
and computation workload results, that the starting
model of figure2 does not have good concurrency
properties. This outlines the potential of using different
steps of task level splitting or merging and data level
partitioning to derive in a structured way a parallel
implementation of the H.264/AVC encoder that has a
balanced computational workload and good
communication behavior.

5. Concurrency optimization of the
starting H.264/AVC parallel model

To get a parallel implementation of the encoder that
has a balanced computational workload and good
communication behavior, different steps of the task
level merging and data level splitting have been
performed. The task-merging is used to merge the
“Dct_Dec”, the “DB_Filter”, the “Sub”, the “Dmx”,
and the “Add” processes into only one
“Dct_Dec_Filter” process. In this case, the associate
channels transmitting very large token structures are
removed. For the most computational-expensive
“Mec” task, data splitting is proposed for better
concurrency optimization. For the most
computational-expensive Motion estimation and
compensation “Mec” task, a data partitioning strategy
has been considered to distribute the computing of
this process into three “Mec1”, “Mec2”, and “Mec3”.
In addition, tripling the “Mec” processes will result in
tripling the associated Input/Output FIFO channels.
For partitioning the data to the three “Meci” modules,
a strong data dependency analysis of the motion
estimation and compensation process has been
performed. Given the results of this analysis, an
appropriate strategy has been used for the best
partitioning of the communicated data to the motion
estimation compensation (MEC) processes and for
maximizing the parallelism rate between the triple
decomposed MEC processes. Further details about
the performed data dependency analysis along with
deep discussions of the main problems encountered
and the proposed solutions for the effective data-
splitting of the three inter-prediction modules are
discussed in our previous work presented in [11].

Finally, the obtained optimized parallel model is
given in figure 5. This figure clearly shows the task-
merging of the “Dct_Dec_Filter” process, and also
the data-partitioning for the “Mec” process into the
“Mec1”, “Mec2”, and “Mec3” processes with the
appropriate connections between the “Meci”
processes and their environment. This model has
been implemented and validated at YAPI system
level. The communication and computation workload
profiling results of the final parallel model for the
same QCIF “Bridge close” 13 YUV frames sequence,
are reported in figure 6.

It is clear given the obtained communication profile
that the optimized model has better communication
behavior compared to the starting model. In addition,
as shown in figure 6, the data partitioning of the
MEC processes comes with a decrease in the
computational burden of these processes, and thus a
better computational workload balance of the model
is observed. The final proposed model has obviously
better communication and computational behavior
compared to the first starting model. Anyway, one
can further use the data parallelism for the MEC
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module to more reduce the computational workload on
the associated processes.

Figure5. Proposed optimized parallel KPN model of the
H.264 encoder
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Figure6. Computation and Communication workload
profiling of the optimized final parallel model

6. Multiprocessor simulation results

To demonstrate the effectiveness of the proposed
optimized parallel model of the H.264/AVC encoder,
the system-level simulation and modeling framework
Sesame/Artemis [22] has been used to evaluate the
encoding performance, in terms of number of coded
frames per second, targeting several multiprocessor
platforms. For this, the base target architecture and the
mapping strategy are first presented. Sesame system
level design is then used for performance evaluation of
the encoder targeting multiple multiprocessors
architectures.

6.1 The base target architecture and mapping
Using the Sesame system-level design methodology,
three software model specifications are required: the
application process network model, the target
architecture model, and the mapping model of the
application onto the architecture. For this, the
optimized parallel model given in section 5 has been
first ported into the Sesame framework by
transforming the YAPI model into a C++ PNRunner
(Process Network Runner) application. The network
model is then simulated with the PNRunner simulator
to generate computational and communication event
traces of the application execution. These event traces
are called trace-event queues. For further details
about the Sesame/Artemis simulation and modeling
framework, one can refer to [22] and [23].

Parallel to the application model specification, the
target architecture is modeled with the Pearl object-
based simulation language [24]. For this, the
Sesame/Artemis framework provides a small library
of architecture component models. These models
consist in black-box base models of processing cores,
generic buses, generic memories, and several
interfaces for connecting these base model building
blocks. Once a target architecture model is validated,
a trace-driven simulation of the application events
traces queues mapped to the architectural components
is carried out. Such a simulation requires an explicit
mapping of the KPN processes and channels to the
particular components of the target architecture.
More than one KPN process can be mapped to a same
processor. In this case, the system simulator
automatically schedules the events from the different
queues [25].

In our case, the base target architecture is given in
figure 7. This figure represents a multiprocessor
platform communicating with a shared DRAM
memory through a common bus. For this platform,
we have used general purpose processors (assumed to
be MIPS R3000), and assumed a conservative timing
of 100ns to read/write a 64-bit word from/to DRAM.
The instruction latencies for the MIPS R3000
microprocessors components were estimated using
technical documentation. Communication between
components is performed through buffers in shared
memory. For sufficient design space exploration,
several platform models are used. The platforms
differ by the number of used processors. One
platform is used with two processors; a second is
with four and a third is tested with six processors.

Mapping application processes to this platform has
been decided explicitly given the obtained
computation and communication load distribution
results of figure6. For the bi-processor platform
example, the total computation load has been
distributed between the two processors. The “Mec1”,
“Mec2”, and “Dct_Dec_Filter” processes are mapped
to one processor, and all the others to the second
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processor. Using the four-processor platform, the used
mapping strategy is showed in figure 7. In this case,
first, the most complex “Mec1”, “Mec2”, “Mec3”, and
“Intra-Pred” processes are mapped separately to each
used core to guarantee a competitive execution
between them. Then, the “Dct_Dec_Filter” process is
added to run with the “Mec2” process on the same core.
The “Vlc” is also added to the “Intra-Pred” process and
is mapped to the fourth processor.

Figure7. H.264 encoder’s application to architecture
mapping

6.2 Performances evaluation of the proposed
parallel model
The PNRunner optimized H.264/AVC network model
of figure 5 is mapped into the different used platforms,
then a performance analysis is performed by system-
level simulations. In all the experiments, the input test
video sequence consists of YUV frames with a QCIF
resolution of 176*144 pixels. The simulation results of
the QCIF “Bridge-close” sequence H.264/AVC
encoding process are obtained for different platforms
and are presented in the next figure 8. It is clear from
this figure, that the encoding performance obtained, in
terms of frames per second, are getting linearly better
with the number of simulated microprocessors. For
each case, as the application model is considered to be
optimal, the execution/communication performances
gain may be improved by changing the mapping policy
or the platform architecture. To modify the architecture,
a designer can explore the use of other communication
models or enhance the architecture with hardware
components using appropriate HW/SW partitioning.

In addition, the encoding performance results of the
optimized model have also been compared to those
previously obtained using the data-level parallelization
approaches proposed in [8 and 9]. Results of this
comparison are given in the table1. This table clearly
shows that our solution, based on simultaneous task
and data level parallelism, has achieved better
performance of the encoding process. Actually, using
references [8] and [9], data splitting is performed
respectively at the MBs row and MBs region
communication granularity levels. But for our case a
more fine-grain Macro-Block communication
granularity level is exploited. Thus, with a more fine

grain data amount exchanged by the processors, our
proposed approach is more adapted for embedded
multiprocessor SoC implementations having limited
on-chip memory resources.
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Table1. Obtained Multiprocessor simulation results in
comparison to those obtained in [8] and [9]

Finally, for the four-processor platform with the
common bus structure, performance numbers for the
execution/communication workload is obtained for
each used architecture component. The obtained
results are shown in figure9. For each component, a
bar shows the breakdown of the time spent on
reading/writing, being busy and being idle.

Using figure 9, it is obvious that the computation cost
is much more important than the time spent in
reading/writing from/to the shared memory. The
communication and computation loads are nearly
balanced for all the used components. Such a result
confirms the good concurrency properties of the
proposed optimized parallel model and the good
mapping policy used. However, the times being idle
are too much important in comparison with those
being busy for all the architecture components. This
has probably caused a substantial degradation of the
final encoding performances. Given the important
amount of data communicated between processes for
this encoding process, it is clear that the common
memory bus structure constitutes a serious
communication bottleneck. Actually, the very
important data dependency between processors
requires a potential memory access and allocation for
the read/write operations. For a common-bus
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multiprocessor architecture, this causes a saturation of
bus and thus a lot of time is spent in waiting to
read/write data from/to other component. For further
design space exploration and in order to reduce the
communication bottleneck observed for the common-
bus-based architecture, others inter processors
communication structures and topologies need to be
evaluated for a better encoding performance.
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Figure9. Reading-Writing/Execution/Idle statistics for
the common-bus-based architecture

7. Conclusions

The H.264/AVC has been designed with the goal of
enabling significantly improved compression
performance relative to all existing video coding
standards. Implementing a H.264/AVC video encoder
represents a big challenge for resource-constrained
embedded systems since this requires very high
computational power to achieve real-time encoding.
For a cost-effective implementation, a multiprocessor
approach is necessary to share the encoding execution
time between several processors. Prior to the
multiprocessor implementation, the sequential
H.264/AVC reference code has to be distributed using
appropriate high level parallel programming model of
computation. For this purpose, a high-level
independent target-architecture parallelization
approach is proposed. The key characteristics of this
approach is the use of the parallel streaming
programming models of computation, the selection of a
fine-grain communication at a Macro-Block granularity
level, and the exploration of the data and task levels
forms of parallelism simultaneously.

Using the reference C code, a staring parallel model of
the encoder is proposed. This model, based on Kahn
Process Network (KPN) model of computation, is
implemented using the YAPI multi-threading
programming environment, and its associated
functional simulation results are obtained. Given the
high complexity of the H.264/AVC standard, details
about implementation issues are given to cope with
problems related to reference frame memory
management; large inter process data structures,
specialized function redundancy and management of
the large local variables. According to the
communication and computation concurrency

properties of the implemented starting model, task
splitting or merging and data level parallelism have
simultaneously been explored to derive in a
structured way an optimized parallel YAPI/KPN
model with a good computation and communication
workload balance.

To evaluate the effectiveness of the optimized
parallel model, the system-level Sesame/Artemis
simulation framework has been used targeting
multiple multiprocessors platforms. It has been
shown that the encoding performance obtained, in
terms of frames per second, are getting linearly better
with the number of simulated processors. In addition
and in comparison to previous parallelization
approaches proposed in [8 and 9], the proposed
optimal model achieves better performance and is
more appropriate for use in SoC implementation
since it is based on a more fine grain communication
granularity level. Finally it has been shown, for the
four-processor platform with the common bus
structure, that the computation cost is much more
important than the time spent in reading/writing
from/to the shared memory. The communication and
computation loads are nearly balanced for all the used
components. These results represent again a solid
confirm of the good concurrency properties of our
optimized model.
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