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Abstract. As a result of the increasingly predominance of agent technology, there has been a lot of interest
in developing agent-based methodologies. In particular, formal methodologies have recently received the
attention of the agent community. One of the key features of these methodologies is their emphasis on the use
of formal methods as a means to trust multiagent systems (MAS) to behave as expected. The main purpose
of this paper is to extend the development process of a formal approach for designing agent-based appli-
cations, called ForMAAD. The effort expended in the added phase is concentrated on two tasks: formally
specify MAS to provide a more concrete specification, and verify that the specified system fulfils correctness
properties. The adoption of formal techniques from the concurrency theory is founded on the view of MAS
as a computational organization of concurrent problem-solving entities.
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1 Introduction

Research into methodologies for agent-based systems
has dealt over the past years with analysing, de-
signing and implementing software systems. The fo-
cus has to guide designers through the software life
cycle from problem description to implementation.
Currently, as the designers cope with increasingly
complex and large-scale applications, the delivery of
bug-free systems turns out to be hard to make with
standard techniques. To tackle this challenge, for-
mal methods are perceived as an appropriate way
of increasing confidence in software engineering. For-
mal methods can be useful in developing agent-based
systems, in particular when critical applications are
being developed, when prototyping agent-based sys-
tems at a high-level and when developing complex
cooperating systems [1].

ForMAAD (Formal Method For Agent-based Ap-
plication Design) [2] is considered to be among this
new trend of formal MAS methodologies. Design-
ing agents society in a rigorous and incremental way
based on stepwise refinements is the basic goal of
ForMAAD. Along this process, design issues include

organization structure, assignment of functionalities
(roles) to computational entities (agents) and high-
level interactions between these entities. Essentially,
the key idea for understanding and mastering the in-
herent complexity of MAS is to build system design
by means of successive refinements. Two complemen-
tary levels are supported: individual and collective
levels that are closely related to inter and intra-
agents aspects. System comprehension (understand-
ing system structure and behaviour) is the main-
stream topic in ForMAAD specification design using
Temporal Z. As a result, several functional proper-
ties of the system are not well-specified, and con-
currency, one of the most important advantages of
multiagent solutions, is not exploited. This means
that the obtained system design cannot readily be
employed for implementation. A large gap exists be-
tween the design and implementation. This paper
seeks to address this gap by studying how it can be
bridged.

The objective of this work is twofold. Firstly, we
aim at extending the formal development process
with a phase that, based on the pre-established de-
sign of ForMAAD, provides a more concrete speci-

International Journal of Computing & Information Sciences       Vol. 5, No. 1, April 2007, On-Line                              35
From Formal Specification to Model Checking of MAS Using CSP-Z and SPIN

Ahmed Hadj Kacem and Najla Hadj Kacem

Received: May 1, 2006 | Revised: June 30, 2006 | Accepted: September 30, 2006

Big Boss
Pages 35 - 44



fication describing and reasoning about concurrent
problem-solving entities. Our primary tool in this
phase is the specification language CSP-Z [3]. As its
name indicates, CSP-Z is a combination of the pro-
cess algebra CSP and the model-based notation Z,
in such a way it models simultaneously dynamic and
static aspects of agents in terms of their knowledge
and interactions. Having established system correct-
ness with mathematical rigour of CSP-Z, we secondly
aim at checking whether the system specification sat-
isfies correctness properties. Until recently, the veri-
fication of CSP-Z specifications is well supported by
the model checking technique using FDR [3]. But
for lack of this tool, we had to seek for the availabil-
ity of an adequate tool support. The selected one
is the model checker SPIN (Simple ProMela INter-
preter) [4]. Its selection is motivated by two facts.
First, it has been successfully applied to trace logical
design errors in distributed systems, such as oper-
ating systems, data communication protocols, con-
current algorithms, etc. [4]. Second, its input lan-
guage is CSP-like in the sense that it shares many
features with CSP. Two notations are supported by
SPIN: the modelling language called Promela (Pro-
cess Meta Language) to build verification models and
Linear Temporal Logic (LTL) [5] to express correct-
ness properties. The Z/Eves theorem prover [6] is
used as well for syntax and type checking of Z spec-
ifications.

The remainder of the present paper is structured
as follows. Section 2 begins by discussing through re-
lated work the appropriateness of formal techniques
from concurrency theory to MAS. Section 3 gives
an overview on CSP-Z and presents the basic usage
modes of SPIN, namely, as a simulator and as a veri-
fier. Then, section 4 proposes the essential features of
the translation of CSP-Z into Promela to performing
the model checking of correctness properties. To em-
phasize our proposals, section 5 details a case study
about air traffic control. Finally, the last section con-
tains a short conclusion and tracks for future works.

2 Related work

Concurrent and distributed systems have long been
recognized as one of the most complex classes of com-
puter system to design and implement. A great deal
of research effort has been devoted to understanding
this complexity, and to developing formalisms and
tools that enable a developer to manage it [7]. By
their nature, multiagent systems tend to be multi-
threaded. The problems inherent in multi-threaded
systems do not go away, just because the adoption of
an agent-based approach [8]. The most known prob-
lems such as deadlock, livelock and mutual exclusion

also apply to agent-based systems whenever agents
interact in unexpected ways.

From this view, a number of works in MAS re-
search investigate a range of process-oriented for-
mal methods, such as CCS [9][10] and Petri nets
[11][12][13]. Although these works show the feasibil-
ity of the approach, they suffer from the limitation of
poor capacity to capture only behavioural aspects.
Obviously, all the aspects of MAS can neither be
specified nor verified with only one formalism. As a
result, the promising tendency towards multi-aspect
formalisms receives a lot of attention of the agent
community. There is a trade-off between the aspects
to which the specification applies and the joint use of
formal methods. For example, integrations of process
algebras with algebraic specification languages are
more suitable to capture static and dynamic aspects
of MAS. To this end, formalisms such as LOTOS
[14], π-calculus [15] and CO-OPN [16] are investi-
gated. In case of real-time MAS, additional aspect
of time is specified using TCOZ [17]. Much of these
research works are concerned with the specification
of agents without performing verification. Therefore,
the correctness of the system cannot be proved. It is
recently that model checking techniques have begun
to find a significant audience in the multi-agent sys-
tems community [18]. The works investigating SMV
[19][20] and UPPAAL [21] are among the proposals
for applying model checkers of concurrent systems to
MAS.

While solutions in several works are to resort to
the existing formal technologies of concurrent sys-
tems, other ones propose formalisms for specifying
MAS. But to perform verification, they exploit ex-
isting tools. For instance, in [22] and [18], respec-
tively MABLE and AgentSpeak(F) languages are in-
troduced to specify MAS. Both works translate their
specifications into Promela to perform model check-
ing with SPIN. The agents are specified there by
predicates. The model checking deals with the tem-
poral verification of these predicates.

Of course the adoption of formal techniques from
the concurrency theory as a means for specifying
and verifying MAS is not new. Nevertheless, there
are three contributions in our work. First, it’s worth
pointing out that the common problem with all
the works mentioned previously consists in the lack
of agent-oriented analysis and design phases. These
phases are critical in the development process. In
ForMAAD they give rise to defining the roles in the
organization, showing how these roles interact with
one another. Once defined, the roles will be aggre-
gated into agent-instances. Second, while the result-
ing design specification in Temporal Z provides a
convenient starting point for our concern, it is so
abstract that some important aspects are omitted.
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In order to build a more concrete specification, we
make use CSP-Z to rigorously reason about system
software. Third, as we will show, one of the main
problems that our application of model checking is
intended to address is the independencies between
agents rather than the agent internal states. We show
how abstracting these internal executions can reduce
the costly and time consuming verification effort.

3 Overview on used formal language
and tool support

3.1 CSP-Z

Among the multiple aspects of concurrent systems
and MAS too (time, behaviour, data, mobility, etc.),
data-oriented and behavioural aspects are often the
most considered. Such aspects can be modelled si-
multaneously with a combination of suitable for-
malisms such as CSP-Z. By combining CSP jointly
with Z, CSP-Z offers good legibility and good expres-
siveness. Furthermore, it favours the reuse of Z spec-
ifications pre-established during the design phase of
ForMAAD as well as existing tools like Z/Eves.

The basic structure of a process specification in
CSP-Z is encapsulated between two keywords spec
and end spec followed by the process identifier. Its
scope consists of an interface and two complemen-
tary parts (CSP part and Z part). While CSP part
is used to model process interaction, Z part is used to
model data types, state and operations that define
the state change caused by each CSP event. Z op-
eration schemas have their names from the channel
names prefixed by the keyword com . When CSP,
called main formalism, performs an event e, the cor-
responding Z operation com e is executed unless its
pre-condition holds.

Within the framework of MAS, the most obvi-
ous solution is to assign every agent to a process.
Generally a CSP-Z specification of an agent has the
following form.

spec AgentId
Interface ; CSP Part ; Z Part

end spec AgentId

When the agent-processes are placed to evolve
simultaneously, the behavioural description of the
global system will be introduced with CSP using
the parallel composition (‖) of processes. Within the
framework of MAS, if the environment is coupled
with agents then it should be considered as a pro-
cess brought together with agents to interact with
each other. A specification of MAS has the following
form:

MAS Id=AgentId1 ‖...‖ AgentIdn [‖ EnvironmentId]

3.2 SPIN/Promela

As seen before, MAS have the same class of prob-
lems that arise when building concurrent systems
such as deadlock, livelock, starvation, race condi-
tion, etc.. Being developed to report on such prob-
lems, SPIN performs simulation and model check-
ing on system verification models written in a high-
level language called Promela. We choose Promela
because it provides all necessary aspects: parallel and
asynchronous composition of concurrent processes,
non-deterministic and guarded control structures,
sending and receiving primitives and communica-
tion channels. The interactions between processes
are modelled either by synchronous (e.g, rendezvous)
or asynchronous (e.g, buffered) communication chan-
nels, or by global variable sharing.

The three basic types of objects in Promela model
are processes (proctype), message channels (chan)
and data objects. The statement execution is condi-
tional on its enabledness or executability. All state-
ments are either executable or blocked. Blocking is
a primary mechanism to enforce synchronizing com-
munication between processes. The sending or re-
ceiving process blocks until the system transfers the
message. To model the global system process, the ini-
tialization process init is often used to introduce the
main of the code. It prepares the initial state of the
system by initializing global variables and instantiat-
ing the appropriate processes. It should be employed
to activate simultaneously (run) process-instances of
agents and possibly the environment.

Given a Promela model, SPIN performs on it two
complementary verification techniques: the simula-
tion and the model checking. By means of simulation,
SPIN shows how well the system reacts to certain
scenarios. Simulation cannot easily explore all of the
possible scenarios and therefore subtle errors can re-
main undiscovered. Because of the additional advan-
tage over simulation of exploring all possible scenar-
ios, the model checking technique has the potential
to reveal serious design problems in the model.

Correctness properties can be specified as sys-
tem invariants using assertions, as specialized states
using end-, progress- and accept-state or as tempo-
ral formulas. SPIN reports on correctness violations
of these properties by checking for the existence of
execution paths that (i) abort through an assert,
(ii) end in an invalid end-state, (iii) avoid cycling
through certain progress-state, (iv) cycle through an
accept-state, and (v) violate temporal claim. Once
a correctness property is violated, SPIN provides
a counterexample that shows through a simulation
how the model can reach undesirable state.
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4 Syntactic-directed translation of
CSP-Z specification into Promela
model

In this section, we propose the essential features of
the translation from CSP-Z to Promela. Our concern
here is to emphasize the importance of proving with
Promela that inter-agent dependencies cannot result
in unexpected interactions.

A formal CSP-Z specification is a primary ab-
stract representation of the system. However when
we turn from the specification to the verification
stage with SPIN, verification systems do have physi-
cal limitations that are set by problem size, machine
memory size, and the maximum runtime that the
user is willing, or able, to endure [4]. For the sake of
the applicability of model checking (without state
space explosion), these constraints must be taken
into account. A way to deal with state space is to
make the verification model more general using the
technique of abstraction [23]. It is a technique to
build a more abstract model while still preserving
properties of interest. Our issue is of the appropriate
level of abstraction.

According to our experiment with a first case
study of prey-predators [24], when building an
abstract model, we are faced with the following
dilemma: if the level of abstraction is too low then
the state space will be large and verification will be
difficult. However, if the level of abstraction is too
high, the representation will be obscured. Choosing
the most appropriate level of abstraction for our ver-
ification model is not thus trivial.

On the basis that the emphasis in Promela mod-
els is placed on the coordination and synchronization
aspects of a system and not on its computational as-
pects [25], we propose a translation method of CSP-
Z specification into Promela model. The idea is the
building of a verification model that’s guided by the
deduction of the desired properties to be verified.
If the property is of interaction in the sense that is
global and depends on the behaviour of all processes,
it will be preserved. However, if a property is local to
a process then it will be omitted. For example, local
computations and data dependencies are irrelevant
for the verification. There are even no reals, floats or
pointers in Promela for the simple reason models are
building to prove coordination and not computation.

Taking the view of agents, the problem is not
related to the internal states of agents, but rather
to the independencies between agents. In order for
agents to deliver the overall functionality, they need
to interact in a cooperative way to achieve a com-
mon goal, to coordinate their actions and to ne-
gotiate to solve conflicts. Central to modelling in-
teracting agents, phenomena such as concurrency

and non-determinism can result in unexpected be-
haviour. The question then is how to manage these
independencies.

It should be clear now that process interac-
tion modelled by CSP is of considerable inter-
est in the translation of CSP-Z into Promela. In-
tuitively there are seeming resemblances between
CSP and Promela. Both support parallelism, non-
determinism, communication and synchronization.
Moreover, both are based on the notions of asyn-
chronous process and message channel communi-
cation, however the nature of communication that
occurs in CSP is different from that in Promela.
The communication in the former is synchronous
whereas it’s in the latter both synchronous and asyn-
chronous. These high-level similarities simplify con-
siderably the translation of CSP-Z into Promela.
As a result, CSP-Z agent-processes of the MAS are
straightforwardly modelled as proctypes communi-
cating through synchronous channels.

Nevertheless, there are some challenges related to
Promela. By its high-level nature Promela’s expres-
siveness is rather low; it offers a few basic data types
and primitive type constructors. Similarly there are
so few constructs in CSP. We propose the cor-
responding Promela constructs only for the most
used ones. On the contrary, Z notation is consid-
ered to have wider constructs. But as argued before
we mainly focus on interesting operations and data
types. (see table 1)

Using this method of translation, a skeleton of
a Promela model is generated and then has to be
completed with reference to Promela features. For
example, one can apply the atomicity construct to
non-blocking statements by executing them in one in-
divisible step; without interleaved execution of other
processes.

5 A case study: Air Traffic Control

The major concern of Air Traffic Control (ATC) sys-
tems is to ensure the safe operations of commercial
and private aircraft. Their growing complexity due
to the increasing number of flights, together with the
pressure to avoid delays and collisions, makes the es-
tablishment of low-defect systems an enormous chal-
lenge.

An ATC system is often designed around airspace
divisions; the sectors. In each sector, air traffic con-
trollers have to coordinate efficiently the movement
of air traffic to keep planes at safe distances from
each other. In critical situations, the path of planes
may inevitably be changed from the original flight
plan to stave off bad weather or avoid a congested
sector. Such situations can result in potential con-
flicts and have disastrous consequences. Negotiation
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CSP Promela

Communication channels of the Interface

channel ChanId [p1 : T1, ..., pn : Tn] chan ChanId=[0 ] of {t1, t2, ..., tn}
channel ChanId [ ] (for signals transmission) No signal notion in Promela, but let us assume:

chan ChanId=[0 ] of {bit}
Processes

a → P If the event a is associated with an operation schema com a
then check the executability of the pre-condition of com a.
Otherwise, the event is just passed.

a1 → P1 | ... | an → P2 non-deterministic structures:
P � Q or P � Q if..fi or do..od

P � Q {P instructions} unless {Q instructions}
Z Promela

State schemas

Declaration part :
Free Type mtype declaration
Schema type Data structure typedef
Axiomatic definition C Macro or inline definition

Predicate part : invariant state assert(invariant)

Operation schemas

Pre- and post-condition If the guard (standing for the pre-condition) is executable,
the following instructions (standing for the post-condition)
will be executed.

Table 1. Syntactic correspondences between CSP-Z and Promela

can be seen as a method for coordination and conflict
resolution between self-interested entities that must
communicate by exchanging proposals and counter-
proposals in order to reach an agreement.

In the agent-based solution of the work of [26],
negotiating agents are assigned to planes. The scope
of this solution encapsulates a negotiation model be-
tween two planes in conflict situation; both have the
same altitude and are flying on two different routes.
Relying on radar and environmental visual observa-
tion (standing for agent perception field), planes are
able to detect and solve potential conflicts. Their ne-
gotiation involves the iterative exchange of proposals
and counterproposals to change one plane’s speed or
altitude.

It’s worth noting that this solution is a simplified
prototype. How to deal with a negotiation model be-
tween agents is the main focus of this case study. The
description below details our problem of ATC.

As a plane approaches a waypoint, its perception
field detects incoming radar signals that inform of
a plane’s presence. Hence the plane, acting as the
detector, sends its next waypoint in the direction
of the other plane, acting as detected, in order to
check whether it is a conflict. Having compared the
waypoints, the detected answers with conflict’s ab-
sence in which case the negotiation terminates, or
a proposal for changing speed. Upon receipt of the
proposal, the detector evaluates according to its ca-
pabilities whether it can accept or reject it. In the

first case, the detected will be informed of the con-
flict’s resolution and the negotiation terminates. In
the other case, the detector makes a counterproposal
for changing speed. In the same way, the detected
evaluates the counterproposal. It switches the pro-
posal to changing altitude in case the counterpro-
posal is rejected. The detector evaluates the new pro-
posal according to its capabilities. At extreme case,
if the proposal is rejected then the detector makes
a counterproposal for changing altitude. Inevitably
the detected has to accept the last proposal.

5.1 CSP-Z specification

We present here a CSP-Z specification of the prob-
lem. We firstly introduce the Z global declarations to
be accessible by all agent-processes. Then, we show
the specification of agent-processes, we consider only
the plane1. Finally, we give the behavioural descrip-
tion of the overall system.

Z global declarations: The airspace of ATC is
divided into sectors. Within each sector are high-
ways, called routes, connected with point, called
waypoints. Each waypoint is marked by a position, a
name and a radius. To ensure the security of planes,
only one plane may travel across a radius.

Pos =̂ [x , y : N | x > 0 ∧ y > 0]

WayPoint =̂ [name : String ; pos : Pos; radius : N]
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Between two waypoints, a route is divided into a
sequence of parallel corridors. A corridor is defined
by an altitude, a starting and an arrival point. When
a corridor crosses with another route’s corridor, the
crossing is called a waypoint (core of our conflict sit-
uation).

Corridor =̂ [alt : N; wp dp,wp arr : WayPoint ;
free : Bool | wp dp.pos �= wp arr .pos]

For maintaining safe distances between corridors
of the same route, a distance DiffAltMax is given.

DiffAltMax : N

Route
Num : N

SeqCorr : seqCorridor

∀ i , j : N | i �= j ∧ 1 ≤ i ≤ #SeqCorr ∧ 1 ≤ j ≤ #SeqCorr •
(SeqCorr(i)).alt �= (SeqCorr(j )).alt

∀ i : N | 1 ≤ i ≤ #SeqCorr •
(SeqCorr(i + 1)).alt − (SeqCorr(i)).alt = DiffAltMax

All inter-agent-processes communications are
modeled by message passing channels. We present
here the messages that are interpreted similarly by
communicating agents.

Message ::= SolvedConflict | NotConflict | NotChgSpeed |
ChgAltitude

Using message exchanges, the agents in con-
flict conduct negotiation to reach an agreement: one
plane has to change either its speed (speed up/slow
down) or altitude (go up/go down to the adjacent
corridor).

Go up : P(Corridor)

∀ corr : Corridor • Go up corr ⇔ corr .free = T

Agent-processes specification: At the design
phase two agents are defined, one agent-process per
plane; plane1 and plane2. Three roles are defined
as well: Detector, Negotiator and Solver. Each role
identifies capabilities which the plane must provide.
Organizational relationships between planes are not
static, they vary over time.

We consider in the following the plane1’s process
as a typical example of plane2’s one. For the sake
of clarity, we present the CSP-Z specification of the
plane1 as follows.

1. The interface description
The interface is described as a set of events and
includes channels and local channels. The key dif-
ference between them is the visibility: channels are
visible by other processes whereas local ones are not.

Channels are uni-directional, connect a pair of pro-
cesses and have a type associated with their names.
For example, the processes of both planes are con-
nected via the channel sensepl1pl2 that passes values
of type WayPoint, with plane1 sending message and
plane2 receiving it.

channel sensepl1pl2 : [wp arr1 : WayPoint ], sensepl2pl1 :
[wp arr2 : WayPoint ]
channel notconflictpl1pl2, notconflictpl2pl1 : [msg1 :
Message]
channel conflictpl1pl2 : [pos1 : Pos, spd1 : Speed ],
conflictpl2pl1 : [cur pos2 : Pos, cur spd2 : Speed ]
channel solvedconflictpl1pl2, solvedconflictpl2pl1 :
[msg1 : Message]
channel chgspeedpl1pl2 : [pos1 : Pos, spd1 : Speed ],
chgspeedpl2pl1 : [cur pos2 : Pos, cur spd2 : Speed ]
channel notchgspeedpl1pl2, notchgspeedpl2pl1 : [msg1 :
Message]
channel chgaltitudepl1pl2, chgaltitudepl2pl1 : [msg1 :
Message]
local channel detectpl2 : [ ]
local channel speed up1, slow down1, unable chgspd1 :
[ ]
local channel go up1, go down1, unable chgalt1 : [ ]

2. The CSP Part
The behavioural description of the plane1 is de-
scribed as an interleaving of NORMAL (perform-
ing the process of flying), DETECTOR (the pro-
cess of the plane1 if it’s detector of a conflict) and
DETECTED (the process of the plane1 if it’s de-
tected). The first process NORMAL is not of inter-
est in our case, we simply assume that the process is
active.

An inter-planes communication involves an ini-
tiator process and a responder process. As the com-
munication evolves, both processes change their
states. We consider this move from a state to an-
other through a hierarchy of processes added to the
main equation. Their names originate from the ini-
tiator and responder sides jointly with a number to
make difference between them.

main = NORMAL ||| DETECTOR ||| DETECTED

DETECTOR = detectpl2 → sensepl1pl2!wp arr1 →
DD2 DR1(I)

DD2 DR1(I) = notconflictpl2pl1?msg1 → main |
conflictpl2pl1?cur pos2,cur spd2 → DR1 DD2(II)

DR1 DD2(II) = speed up1 → solvedconflictpl1pl2!msg1
→ main � slow down1 → solvedconflictpl1pl2!msg1 →
main � unable chgspd1 → chgspeedpl1pl2!pos1,spd1 →
DD2 DR1(III)

DD2 DR1(III) = solvedconflictpl2pl1?msg1 → main
| notchgspeedpl2pl1?msg1 → DR1 DD2(IV)
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DR1 DD2(IV) = go up1 → solvedconflictpl1pl2!msg1
→ main � go down1 → solvedconflictpl1pl2!msg1 →
main � unable chgalt1 → chgaltitudepl1pl2!msg1 →
DD2 DR1(V)

DD2 DR1(V) = solvedconflictpl2pl1?msg1 → main

DETECTED = sensepl2pl1?wp arr2 → DD1 DR2(I)

DD1 DR2(I) = notconflictpl1pl2!msg1 → main |
conflictpl1pl2!pos1,spd1 → DR2 DD1(II)

DR2 DD1(II) = solvedconflictpl2pl1?msg1 → main |
chgspeedpl2pl1?cur pos2,cur spd2 → DD1 DR2(III)

DD1 DR2(III) = speed up1 → solvedcon-
flictpl1pl2!msg1 → main � slow down1 → solved-
conflictpl1pl2!msg1 → main � unable chgspd1 →
notchgspeedpl1pl2!msg1 → DR2 DD1(IV)

DR2 DD1(IV) = solvedconflictpl2pl1?msg1 → main
| chgatltitudepl2pl1?msg1 → DD1 DR2(V)

DD1 DR2(V) = go up1 → solvedconflictpl1pl2!msg1 →
main � go down1 → solvedconflictpl1pl2!msg1 → main

3. Z Part
From departure to arrival, each plane follows a pre-
established flight plan. The intended airspeed, cruis-
ing altitude, route and corridor of flight are among
the most essential information included in the plan
with reference to our problem. As the plane takes
off, it must adjust its speed and altitude to land
along the appropriate corridor.

(a) State schema

Plane1
pos1, cur pos2 : Pos
spd1, cur spd2 : Speed
corr1 : Corridor
rt1 : Route
path1 : seqWayPoint
perception1 : F Pos
wp arr2 : WayPoint
msg1 : Message

perception1 = {p : Pos | pos1.x ≤ p.x ≤ pos1.x+
PerMinMax ∧ pos1.y ≤ p.y ≤ pos1.y + PerMinMax}

corr1.wp dp.pos.x ≤ pos1.x ≤ corr1.wp arr .pos.x

corr1.wp dp.pos.y ≤ pos1.y ≤ corr1.wp arr .pos.y

∃ i : N | 0 < i ≤ #rt1.SeqCorr • rt1.SeqCorr(i) = corr1

∃ i : N | 0 < i ≤ #path1 • path1(i) = corr1.wp dp ∧
path1(i + 1) = corr1.wp arr

Recall that PerMinMax is the scope of the per-
ception field of each plane.

(b) The initialization schema
The emptiness of the plane1’s perception field is our
main issue in the initialization schema.

InitPlane1 =̂ [Plane1′ | perception1 = ∅]

(c) Z operations
For reasons of brevity, we present below some typical
Z operations.

Once the plane1 detects the plane2’s presence, it
informs it about the next waypoint in order to check
whether it’s a conflict situation.

com detectpl2 =̂ [ΞPlane1 | ∃ pl2 : Plane2 •
pl2.pos2 ∈ perception1]

com sensepl1pl2 =̂ [ΞPlane1; wp arr1! : WayPoint |
wp arr1! = lane1.wp arr ]

Having sent its destination, the plane1 waits un-
til it receives either a message NotConflict or the
plane2’s position and speed.

com notconflictpl2pl1 =̂ [∆Plane1; msg1? : Message |
msg1′ = msg1?]

com conflictpl2pl1 =̂ [∆Plane1;
cur pos2? : Pos; cur spd2? : Speed |
cur pos2′ = cur pos2? ∧ cur spd2′ = cur spd2?]

The overall system specification: The be-
havioural description of the global system is in-
troduced by the parallel composition of the system’s
basic entities: the plane1 and the plane2.

ATC SYS = Plane1 ‖ Plane2

5.2 Verification in SPIN
We illustrate here the application of our proposed
translation to the specified system. Our main con-
cern is to verify the correctness of the system with
respect to desired properties. We firstly present a
part of the Promela model generated after the ab-
straction step, then we express the desired properties
and finally we give the model checking results.

The main purpose of the designed system is to
avoid collision in a waypoint. Since the satisfaction
of this main property depends on whether plane1 or
plane2 solves the conflict, we have to verify that the
conflict resolution is done by only one plane. Ver-
ifying the property is given by verifying that the
two planes reach an agreement after the negotiation
so that one plane changes its speed or altitude. Of
course the aim of the stated property does not con-
cern the local executions of changing speed/altitude,
but rather that iterative exchange of proposals and
counterproposals meets our expectations.
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Abstraction step: As they are irrelevant for veri-
fying the desired properties, the following executions
are omitted in Promela model.

– Comparison of next waypoints: It is per-
formed by the detected plane which chooses
non-deterministically a global boolean variable
samedestination indicating if the waypoints to
be compared are similar (samedestination=true)
or not (samedestination=false).

– Test of ability to change speed: The abil-
ity to change speed is constrained by the cur-
rent positions and speeds of both planes as well
as the waypoint’s position. To perform the test
of ability, a planei chooses non-deterministically
between these local boolean variables speed upi,
slow downi and unable chgspdi, denoting re-
spectively the ability to speed up, slow down or
neither of them.

– Test of ability to change altitude: In case
of changing altitude, the ability to do it is con-
strained by the current availability of the ad-
jacent corridor. To perform the test of ability,
the detector planei chooses non-deterministically
between these local boolean variables go upi,
go downi and unable chgalti, denoting respec-
tively the ability to go up/go down to the adja-
cent corridor or neither of them.

The abstraction of these local executions result in
the abstraction of the used data types, namely, Way-
point, Pos, Speed, Corridor and Route. Instead, sim-
ple data types are used.

Promela Model: Our first step in using SPIN is
the construction of a Promela model from the CSP-Z
specification. We present below a part of the Promela
model.

At first, consider the init process. The decision
of which plane will be detector or detected is made
randomly within the init process by exploring the
non-determinism of guarded commands in Promela.
A globally declared variable pl detector takes non-
deterministically the value 1 or 2 to denote respec-
tively if the plane1 or plane2 is detector.

if

:: pl_detector=1

:: pl_detector=2

fi;

run Plane1(); run Plane2()

Each proctype of plane must then test initially
pl detector to switch either to be detector or de-
tected. For example, consider the plane1.

if

:: pl_detector==1 -> goto DETECTOR1

:: pl_detector==2 -> goto DETECTED1

fi;

In case the plane1 is detector, it sends its next
waypoint and will loop until the receipt of a reply.
It waits for either a message NotConflict or a mes-
sage including the current position and speed of the
plane2.

DETECTOR1: sensepl1pl2!wp; goto progress_DD2_DR1_I;
progress_DD2_DR1_I:
do
:: notconflictpl2pl1?NotConflict -> goto end
:: conflictpl2pl1?pos,spd -> goto progress_DR1_DD2_II
od;

Upon receipt of the reply, the plane1 will end
the communication, or will evaluate the proposal of
changing speed. As argued before, to perform the
test of ability to change speed, a plane chooses non-
deterministically a locally declared variable. Con-
sider the plane1.

progress_DR1_DD2_II:
do
:: speed_up1=true -> solvedconflictpl1pl2!SolvedConflict;

goto end
:: slow_down1=true -> solvedconflictpl1pl2!SolvedConflict;

goto end
:: unable_chgspd1=true -> chgspeedpl1pl2!pos,spd;

goto progress_DD2_DR1_III
od;

Simulation: Given the system model, the simula-
tion facility of SPIN is used to have fast assessment of
whether the system reacts as expected or not. In par-
ticular, the Message Sequence Charts (MSC) is use-
ful for examining communication scenarios between
the planes.

Specification of desired properties: The cor-
rectness properties of the system are expressed using
LTL; the property specification formalism supported
by SPIN. In order to express the properties, a num-
ber of propositions are defined over variables that
should be global, otherwise they are not known to
the corresponding never claims. We give below some
typical properties.

Property1: ”Eventually, both planes will end in
their respective end states as the interaction termi-
nates.”
This property is of particular interest because it is
sensitive to any flaw in the communication. Non-
termination can result, for example, from deadlock,
livelock or message synchronization errors.

� ♦ (p && q)

#define p (end1==true)

#define q (end2==true)

Property2: ”All states of inter-planes communi-
cation are visited.”
This is done using the specialized Promela state
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progress. Progress labels are used to mark all states
of communication; they claim that all states are re-
quired to be visited in at least one execution path.
The correctness of the property is violated if at least
one state is not visited.

SPIN has a special mode to prove absence of non-
progress cycles [27]. It does so with the predefined
LTL formula:

♦ � (np )

np is global predefined, read-only variable, it is
defined to be true in all states that are not marked
as progress states, and is false in all other states.

Property3: ”The message sequence performs as
expected.”
This property can be stated as ”if a plane sends a
message then eventually, it will receive an answer”.
For instance, if the plane1 sends its next waypoint
then eventually, it waits for a reply denoting if a
conflict situation occurs or not.

� (p → ♦ q)
#define p (sense12==true)

#define q ((not_Conflict==true) || (Conflict==true))

Once the communications are verified, we can trust
the agents to communicate as expected.

Model checking results: The exhaustive model
checking results are summarized in table 2. For each
property, we give its result, the number of states ex-
plored and the memory usage.

Property Result No. states Memory (Mb)
1 true 339 2.622
2 true 257 2.622
3 true 189 2.622

Table 2. Model checking results

During the model checking, behavioural proper-
ties are of interest while data-based properties are
omitted. The verification of this final kind of proper-
ties, although important, results in larger state space
and afterwards in the problem of explosion. The use
of non-trivial data structures (arrays, typedef struc-
tures) leads to higher memory usage, but the use
of trivial ones (bit, byte, bool) requires less memory
usage.

6 Conclusion

The contribution of this paper is to address the gap
between the design stage of ForMAAD approach and

implementation. The focus is to build, on the basis
of the resulting design specification, a more concrete
system specification that fulfils correctness proper-
ties. Our effort is not in the direction of develop-
ing from scratch techniques specific to MAS. Rather,
we take advantage of the research effort devoted to
concurrency theory by exploiting existing tools. Of
the specification formalisms, we investigate CSP-Z
to make MAS specifications more concise, less am-
biguous, in such a way it is easier to reason about
them. Among the tool supports, SPIN is investigated
to exploit (i) the simulation facilities, especially the
MSC, in order to support early fault detection, and
(ii) the technique of model checking to prove correct-
ness properties. As our concern is to perform verifi-
cation of desirable properties on MAS specifications,
we propose a syntactic-directed translation of CSP-
Z specification into Promela model. The generated
model is kept as close as possible to the specifica-
tion. This is because Promela is CSP-like and the
emphasis is on interactions between agents rather
than computational aspects.

There are many issues remaining for future work.
First of all, the translation from CSP-Z to Promela
has not yet be formally proved. It has to be directed
by syntax as well as semantics. After proving that
desirable properties are preserved, it is possible to
apply a refinement process such that the specifica-
tion is translated into more and more concrete rep-
resentation. In the final representation, the MAS can
be executed in a programming language.
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