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1. Introduction
The commercial and research interests in data mining 
is increasing rapidly, as the amount of data generated 
and stored in databases of organizations is already 
enormous and continuing to grow very fast. This large 
amount of stored data normally contains valuable 
hidden knowledge, which, if harnessed, could be used 
to improve the decision making process of an 
organization. For instance, data about previous sales 
might contain interesting relationships between 
products, types of customers and buying habits of 
customers. The discovery of such relationships can be 
very useful to efficiently manage the sales of a 
company. However, the volume of the archival data 
often exceeds several gigabytes or even terabytes, 
which is beyond the analyzing capability of human 

beings. Thus there is a clear need for developing 
semi-automatic methods for extracting knowledge 
from data.   

Traditional statistical data summarization, database 
management techniques and pattern recognition 
techniques are not adequate for handling data of this 
scale. This quest led to the emergence of a field 
called data mining and knowledge discovery (KDD) 
[1] aimed at discovering natural structures/ 
knowledge/hidden patterns within such massive data. 
Data mining (DM), the core step of KDD, deals with 
the process of identifying valid, novel and potentially 
useful, and ultimately understandable patterns in data. 
It involves the following tasks: classification, 
clustering, association rule mining, sequential pattern 
analysis and data visualization [3, 4].
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In this paper we are considering classification and 
clustering. Each of these tasks involves many criteria. 
For example, the task of classification rule mining 
involves the measures such as comprehensibility, 
predictive accuracy, and interestingness [5]; and the 
task of clustering involves compactness as well as 
connectedness of clusters [6]. In this work, we tried to 
solve these tasks by multi-objective genetic algorithms 
[7], thereby removing some of the limitations of the 
existing single objective based approaches. 

The remainder of the paper is organized as follows: In 
Section 2, an overview of DM and KDD process is 
presented. Section 3 presents a brief survey on the role 
of genetic algorithm for data mining tasks. Section 4
presents the new dimension to data mining and KDD 
using MOGA. In Section 5 we give the experimental 
results with analysis. Section 6 concludes the article. 

2. An Overview of DM and KDD

Knowledge discovery in databases is the non-trivial 
process of identifying valid, novel, potentially useful, 
and ultimately understandable patterns in data [1]. It is 
interactive and iterative, involving numerous steps with 
many decisions being made by the user. 

Here we mention that the discovered knowledge should 
have three general properties: namely, predictive 
accuracy, understandability, and interestingness in the 
parlance of classification [8]. Properties like 
compactness and connectedness are embedded in 
clusters. Let us briefly discuss each of these properties. 

 Predictive Accuracy: The basic idea is to predict 
the value that some attribute(s) will take in “future” 
based on previously observed data. We want the 
discovered knowledge to have a high predictive 
accuracy.

 Understandability: We also want the discovered 
knowledge to be comprehensible for the user. This 
is necessary whenever the discovered knowledge is 
to be used for supporting a decision to be made by 
a human being.  If the discovered knowledge is just 
a black box, which makes predictions without 
explaining them, the user may not trust it [9]. 
Knowledge comprehensibility can be achieved by 
using high-level knowledge representations. A 
popular one in the context of data mining, is a set 
of IF- THEN (prediction) rules, where each rule is 
of the form 

If    antecedent  then  consequent .

If the number of attributes is small for the 
antecedent as well as for the consequent clause, 
then the discovered knowledge is understandable.

 Interestingness: This is the third and most difficult 
property to define and quantify. However, there are 

some aspects of knowledge interestingness that 
can be defined in objective ways. The topic of 
rule interestingness, including a comparison 
between the subjective and the objective 
approaches for measuring rule interestingness, 
will be discussed in Section 3; and interested 
reader can refer to [10] for more details.    

 Compactness: To measure the compactness of a 
cluster we compute the overall deviation of a 
partitioning. This is computed as the overall sum 
of square distances for the data items from their 
corresponding cluster centers. Overall deviation 
should be minimized.

 Connectedness: The connectedness of a cluster is 
measured by the degree to which neighboring 
data points have been placed in the same clusters. 
As an objective, connectivity should be 
minimized. The details of these two objectives 
related to cluster analysis is discussed in Section 
5.

2.2 Data Mining

Data mining is one of the important steps of KDD 
process. The common algorithms in current data 
mining practice include the following.

1) Classification: classifies a data item into one of 
several predefined categories /classes.

2) Regression: maps a data item to a real-valued 
prediction variable.

3) Clustering: maps a data item into one of several 
clusters, where clusters are natural groupings of 
data items based on similarity matrices or 
probability density models.

4) Discovering association rules: describes 
association relationship among different 
attributes.

5) Summarization: provides a compact description 
for a subset of data.

6) Dependency modeling: describes significant 
dependencies among variables.

7) Sequence analysis: models sequential patterns 
like time-series analysis. The goal is to model 
the states of the process generating the 
sequence or to extract and report deviation and 
trends over time.

Since in the present article we are interested in the 
following two important tasks of data mining, namely 
classification and clustering; we briefly describe them 
here.

Classification: This task has been studied for many 
decades by the machine learning and statistics 
communities [11]. In this task the goal is to predict 
the value (the class) of a user specified goal attribute 
based on the values of other attributes, called 
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predicting attributes. Classification rules can be 
considered as a particular kind of prediction rules 
where the rule antecedent (“IF” part) contains 
predicting attribute and rule consequent (“THEN” part) 
contains a predicted value for the goal attribute. An 
example of classification rule is:

IF (Attendance > 75%) and  (total_marks >60%) 
THEN  (result= “pass”).

In the classification task the data being mined is 
divided into two mutually exclusive and exhaustive 
sets, the training set and the test set. The DM algorithm 
has to discover rules by accessing the training set; and. 
the predictive performance of these rules is evaluated 
on the test set (not seen during training). A measure of 
predictive accuracy is discussed in a later section; the 
reader may refer to [12] also. 

Clustering: In contrast to classification task, in the 
clustering process the data-mining algorithm must, in 
some sense, discover the classes by partitioning the 
data set into clusters, which is a form of unsupervised 
learning [13]. Examples that are similar to each other 
tend to be assigned to the same cluster, whereas 
examples different from each other belong to different 
clusters. Applications of GAs for clustering are 
discussed in [14,15].

3. GA Based DM Tasks

This section is divided into two parts. Subsection 3.1, 
discusses the use of genetic algorithms for 
classificatory rule generation, and Subsection 3.2
discusses the use of genetic algorithm for data 
clustering.

3.1 Genetic Algorithms (GAs) for 
Classification

Genetic algorithms are probabilistic search algorithms. 
At each steps of such algorithm a set of N potential 
solutions (called individuals Ik  , where  represents 
the space of all possible individuals) is chosen in an 
attempt to describe as good as possible solution of the 
optimization problem [19,20,21]. This population P= 
{I1, I2, . . IN} is modified according to the natural 
evolutionary process. After initialization, selection S:
IN    IN and recombination Я : IN    IN  are executed 
in a loop until some termination criterion is reached. 
Each run of the loop is called a generation and P (t) 
denotes the population at generation t.

The selection operator is intended to improve the 
average quality of the population by giving individuals 
of higher quality a higher probability to be copied into 
the next generation.  Selection thereby focuses on the 
search of promising regions in the search space.  The 
quality of an individual is measured by a fitness 
function f: P→ R. Recombination changes the genetic 

material in the population either by crossover or by 
mutation in order to obtain new points in the search 
space. 

3.1.1 Genetic Representations

Each individual in the population represents a 
candidate rule of the form “if Antecedent then
Consequent”. The antecedent of this rule can be 
formed by a conjunction of at most n – 1 attributes, 
where n is the number of attributes being mined. 
Each condition is of the form Ai = Vij, where Ai is the 
i-th attribute and Vij is the j-th value of the i-th 
attribute’s domain. The consequent consists of a 
single condition of the form G = gl, where G is the 
goal attribute and gl is the lth value of the goal 
attribute’s domain. 

A string of fixed size encodes an individual with n
genes representing the values that each attribute can 
assume in the rule as shown below.  In addition, each 
gene also contains a Boolean flag (fp /fa) except the 
nth gene that indicates whether or not the ith condition 
is present in the rule antecedent. Hence although all 
individuals have the same genome length, different 
individuals represent rules of different lengths.   

Let us see how this encoding scheme is used to 
represent both categorical and continuous attributes 
present in the dataset. In the categorical (nominal) 
case, if a given attribute can take on k-discrete values 
then we can encode this attribute by using k-bits. The 
ith value (i=1,2,3…,k) of the attribute’s domain is a 
part of the rule  if and only if  ith bit is 1. 

For instance, suppose that a given individual 
represents two attribute values, where the attributes 
are branch and semester and their corresponding 
values can be EE, CS, IT, ET and 1st, 2nd, 3rd, 4th , 5th, 
6th, 7th, 8th respectively. Then a condition involving 
these attributes would be encoded in the genome by 
four and 8 bits respectively. This can be represented 
as follows:

  

to be interpreted as 

If (branch = CS or IT) and (semester=2nd or 4th).

Hence this encoding scheme allows the 
representation of conditions with internal 
disjunctions, i.e. with the logical ‘OR’ operator 
within a condition. Obviously this encoding scheme 
can be easily extended to represent rule antecedent 
with several conditions (linked by a logical AND). 

A1j A2j A3j A4j An-1j gl

  0 1 1 0 0 1 0 1 0 0 0
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In the case of continuous attributes the binary encoding 
mechanism gets slightly more complex. A common 
approach is to use bits to represent the value of a 
continuous attribute in binary notation. For instance the 
binary string 00001101 represents the value 13 of a 
given integer-value attributes. 

Similarly the goal attribute is also encoded in the 
individual. This is one possibility. The second 
possibility is to associate all individuals of the 
population with the same predicted class, which is 
never modified during the execution of the algorithm. 
Hence if we want to discover a set of classification 
rules predicting ‘k’ different classes, we would need to 
run the evolutionary algorithm at least k-times, so that 
in the ith run, i=1,2,3..,k, the algorithm discovers only 
rules predicting the ith class [22].

3.1.2 Fitness Function

As discussed in Section 2.1, the discovered rules 
should have (a) high predictive accuracy (b) 
comprehensibility and (c) interestingness. In this 
subsection we discuss how these criteria can be defined 
and used in the fitness evaluation of individuals in 
GAs.

1.Comprehensibility Metric: There are various ways 
to quantitatively measure rule comprehensibility. A 
standard way of measuring comprehensibility is to 
count the number of rules and the number of conditions 
in these rules. If these numbers increase then 
comprehensibility decreases.

If a rule R can have at most M conditions, the 
comprehensibility of a rule C(R) can be defined as:

C(R) = M – (number of condition (R)).  (1)

2.Predictive Accuracy: As already mentioned, our rules 
are of the form IF A THEN C. The antecedent part of 
the rule is a conjunction of conditions. A very simple 
way to measure the predictive accuracy of a rule is 

A

CA
edicAcc

&
Pr  ,                                 (2)

where |&| CA is defined as the number of records 
satisfying both A and C.

3.Interestingness: The computation of the degree of 
interestingness of a rule, in turn, consists of two terms. 
One of them refers to the antecedent of the rule and the 
other to the consequent. The degree of interestingness 
of the rule antecedent is calculated by an information-
theoretical measure, which is a normalized version of 
the measure proposed in [25, 26] defined as follows:
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where ‘n’ is the number of attributes in the 
antecedent and |)(| Gdom  is the domain cardinality 
(i.e. the number of possible values) of the goal 
attribute G occurring in the consequent. The log term 
is included in the formula (3) to normalize the value 
of RInt, so that this measure takes a value between 0
and 1.  The InfoGain is given by:
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where mk is the number of possible values of the goal 
attribute Gk, ni is the number of possible values of the 
attribute Ai, p(X) denotes the probability of X and 
p(X|Y) denotes the conditional probability of X given  
Y.

The overall fitness is computed as the arithmetic 
weighted mean as 
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where w1, w2   and w3 are user-defined weights. 

3.1.3 Genetic Operators 

The crossover operator we consider here follows the 
idea of uniform crossover [27, 28].  After crossover is 
completed, the algorithm analyses if any invalid 
individual is created. If so, a repair operator is used to 
produce valid individuals. 

The mutation operator randomly transforms the value 
of an attribute into another value belonging to the 
same domain of the attribute. 

Besides crossover and mutation, the insert and 
remove operators directly try to control the size of the 
rules being evolved; thereby influence the 
comprehensibility of the rules. These operators 
randomly insert and remove, a condition in the rule 
antecedent. These operators are not part of the regular 
GA. However we have introduced them here for 
suitability in our rule generation scheme.

3.2 Genetic Algorithm for Data      
Clustering

A lot of research has been conducted on applying 
GAs to the problem of k clustering, where the 
required number of clusters is known [29].  
Adaptation to the k-clustering problem requires 
individual representation, fitness function creation, 
operators, and parameter values. 
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3.2.1 Individual Representation

The classical ways of genetic representations for 
clustering or grouping problems are based on two 
underlying schemes. The first one allocates one (or 
more) integer or bits to each object, known as genes, 
and uses the values of these genes to signify which 
cluster the object belongs to. The second scheme 
represents the objects with gene values, and the 
positions of these genes signify how the objects are 
divided amongst the clusters. Figure 1 shows encoding 
of the clustering {{O1, O2, O4}, {O3, O5, O6}} by group 
number and matrix representations, respectively.

Group-number encoding is based on the first encoding 
scheme and represents a clustering of n objects as a 
string of n integers where the ith integer signifies the 
group number of the ith object.  When there are two 
clusters this can be reduced to a binary encoding 
scheme by using 0 and 1 as the group identifier.

Bezdek et al. [30] used kn matrix to represent a 
clustering, with each row corresponding to a cluster 
and each column associated with an object. A 1 in row 
i, column j means that object j is in group i. Each 
column contains exactly one 1, whereas a row can have 
many 1’s. All other elements are 0’s. This 
representation can also be adapted for overlapping 
clusters or fuzzy clustering. 

For the k-clustering problem, any chromosome that 
does not represent a clustering with k groups is 
necessarily invalid: a chromosome that does not 
include all group numbers as gene values is invalid; a 
matrix encoding with a row of 0’s is invalid. A matrix 
encoding is also invalid if there is more than one 1 in 
any column. Chromosomes with group values that do 
not correspond to a group or object, and permutations 
with repeated or missing object identifiers are invalid.

Though these two representation schemes are easier but 
limitation arises if we represent a million of records, 
which are often encountered in data mining. Hence the 
present representation scheme uses an alternative 
approach proposed in [31]. Here each individual 
consists of k-cluster centers such as C1, C2, C3, … CK. 
Center Ci represents the number of features of the 
available feature space. For an N-dimensional feature 
space the total length of the individual is kn as shown 
below.

3.2.2 Fitness Function

Objective functions used for traditional clustering 
algorithms can act as fitness functions for GAs.  
However, if the optimal clustering corresponds to the 
minimal objective functional value, one needs to 
transform the objective functional value since GAs 

work to maximize the fitness values. In addition, 
fitness values in a GA need to be positive if we are 
using fitness proportional selection. Krovi [14] used 
the ratio of sum of squared distances between clusters 
and sum of squared distances within a cluster as the 
fitness function. Since the aim is to maximize this 
value, no transformation is necessary. Bhuyan et al, 
[32, 33] used the sum of squared Euclidean distance 
of each object from the centroid of its cluster for 
measuring fitness. This value is then transformed 
( ,max fCf   where f is the raw fitness, f’ is the 

scaled fitness, and Cmax is the value of the poorest 
string in the population) and linearly scaled to get the 
fitness value. Alippi and Cucchiara [33] also used the 
same criterion, but used a GA that has been adapted 
to minimize fitness values. Bezdek et al.’s [30
clustering criterion is also based around minimizing 
the sum of squared distances of objects from their 
cluster centers, but they used three different distance 
metrics (Euclidean, diagonal, and Mahalanobis) to 
allow for different cluster shapes.

4.3 Genetic Operators

Selection
Chromosomes are selected for reproduction based on 
their relative fitness. If all the fitness values are 
positive, and the maximum fitness value corresponds 
to the optimal clustering, then fitness proportional 
selection may be appropriate. Otherwise, a ranking 
selection method may be used. In addition, elite 
selection will ensure that the fittest chromosomes are 
passed from one generation to the next. Krovi [14] 
used the fitness proportional selection [21]. The 
selection operator used by Bhuyan et al. [32] is an 
elitist version of fitness proportional selection. A new 
population is formed by picking up the x (a parameter 
provided by the user) better strings from the 
combination of the old population and offspring. The 
remaining chromosomes in the population are 
selected from the offspring. 

Crossover
Crossover operator is designed to transfer genetic 
material from one generation to the next. Major 
concerns with this operator are validity and context 
insensitivity. It may be necessary to check whether 
offspring produced by a certain operator is valid. 

Context insensitivity occurs when the crossover 
operator used in a redundant representation acts on 
the chromosomal level instead of the clustering level. 
In this case the child chromosome may resemble the 
parent chromosomes, but the child clustering does not 
resemble the parent clustering. Figure 2 shows that 
the single point crossover is context insensitive for 
group number representation. 

Here both parents represent the same clustering, 
{{O1, O2, O3}, {O4, O5, O6}} although the group 

C1 C2 C3 Ck
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numbers are different.  Given that the parents represent 
the same solution, we would expect the children to also 
represent this solution. Instead, both children represent 
the clustering {O1, O2, O3, O4, O5, O6} which does not 
resemble either of the parents.

The crossover operator for matrix representation is as 
follows: 

Alippi and Cucchiara [33] used a single–point asexual 
crossover to avoid the problem of redundancy (Figure 
3).  The tails of two rows of the matrix are swapped, 
starting from a randomly selected crossover point. This 
operator may produce clustering with less than ‘k’ 
groups. 

Bezdek et al. [30] used a sexual 2-point crossover 
(Figure 4). A crossover point and a distance (the 
number of columns to be swapped) are randomly 
selected–these determine which columns are swapped 
between the parents. This operator is context 
insensitive and may produce offspring with less than k 
groups.

Mutation

Mutation introduces new genetic material into the 
population. In a clustering context this corresponds to 
moving an object from one cluster to another. How this 
is done is dependent on the representation.

Group number
Krovi [14] used the mutation function implemented by 
Goldberg [21]. Here each bit of the chromosome is 
inverted with a probability equal to the mutation rate, 
pmut. Jones and Beltramo [33] changed each group 
number (provided it is not the only object left in that 
group) with probability, pmut   = 1/n where n is the 
number of objects.

Matrix
Alippi and Cucchiara [33] used a column mutation, 
which is shown in Figure 5. An element is selected 
from the matrix at random and set to 1. All other 
elements in the column are set to 0. If the selected 
element is already 1 this operator has no effect. Bezdek 
et al. [30] also used a column matrix, but they chose an 
element and flipped it.

4. Multi-Criteria Optimization by GAs

4.1 Multi-criteria optimization

Multi-objective optimization methods deal with finding 
optimal (!) solutions to problems having multiple 
objectives [34, 35]. Thus for this type of problems the 
user is never satisfied by finding one solution that is 
optimum with respect to a single criterion. The 
principle of a multi-criteria optimization procedure is 
different from that of a single criterion optimization. In 

a single criterion optimization the main goal is to find 
the global optimal solutions. However, in a multi-
criteria optimization problem, there is more than one 
objective function, each of which may have a 
different individual optimal solution. If there is a 
sufficient difference in the optimal solutions 
corresponding to different objectives then we say that 
the objective functions are conflicting. Multi-criteria 
optimization with such conflicting objective 
functions gives rise to a set of optimal solutions, 
instead of one optimal solution known as Pareto-
optimal solutions [36].  

Let us illustrate the Pareto optimal solution with time 
& space complexity of an algorithm shown in Figure
6. In this problem we have to minimize both times as 
well as space requirements. The point ‘p’ represents a 
solution, which has minimal time but high space 
complexity. On the other hand, the point ‘r’ 
represents a solution with high time complexity but 
minimum space complexity. Considering both the 
objectives, no solution is optimal. So in this case we 
can’t say that solution ‘p’ is better than ‘r’. In fact, 
there exists many such solutions like ‘q’ that belong 
to the Pareto optimal set and one can’t sort the 
solution according to the performance metrics 
considering both the objectives. All the solutions, on 
the curve, are known as Pareto-optimal solutions. 
From Figure-6 it is clear that there exists solutions 
like ‘t’, which do not belong to the Pareto optimal set.

Let us consider a problem having m  objectives (say 
miif ,.....,3,2,1,  and m >1). Any two solutions 

)1(
u  and 

)2(
u (having‘t’ decision variables each) 

can have one of two possibilities-one dominates the 

other or none dominates the other. A solution 
)1(

u is 

said to dominate the other solution
)2(

u , if the 
following conditions are true:

1. The solution 
)1(

u is not worse (say the operator 

denotes worse and   denotes better) than 
)2(

u in all 

objectives, or .....,3,2,1),
)2(

()
)1(

( miuifuif 

2. The solution 
)1(

u is strictly better than 
)2(

u in at 

least one objective, or )
)2(

()
)1(

( uifuif  for at 

least one, i {1,2,3,.. , m }. 

If any of the above conditions is violated, the 

solution )1(
u does not dominate the 

solution )2(
u . If )1(

u  dominates the 

solution )2(
u , then we can also say that )2(

u  is 

dominated by )1(
u , or )1(

u  is non-dominated 
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by )2(
u , or simply between the two solutions, )1(

u
is the non-dominated solution.   
Multi-criterion optimization algorithms try to achieve 
mainly the following two goals: 
1.Guide the search towards the global Pareto-optimal 
region, and 
2.Maintain population diversity in the Pareto-optimal 
front.
The first task is a natural goal of any optimization 
algorithm. The second task is unique to multi-criterion 
optimization.

Multi-criterion optimization is not a new field of 
research and application in the context of classical 
optimization. The weighted sum approach [37], -
perturbation method [37], goal programming [38], 
Tchybeshev method [38], min-max method [38] and 
others are all popular methods often used in practice 
[39]. The core of these algorithms, is a classical 
optimizer, which can at best, find a single optimal 
solution in one simulation. In solving multi-criterion 
optimization problems, they have to be used many 
times, hopefully finding a different Pareto-optimal 
solution each time. Moreover, these classical methods 
have difficulties with problems having non-convex 
search spaces.

4.2 Multi-criteria GAs

Evolutionary algorithms (EAs) are a natural choice for 
solving multi-criterion optimization problems because 
of their population-based nature. A number of Pareto-
optimal solutions can, in principle, be captured in an 
EA population, thereby allowing a user to find multiple 
Pareto-optimal solutions in one simulation. The 
fundamental difference between a single objective and 
multi-objective GA is that in the single objective case 
fitness of an individual is defined using only one 
objective, whereas in the second case fitness is defined 
incorporating the influence of all the objectives. Other 
genetic operators like selection and reproduction are 
similar in both cases. The possibility of using EAs to 
solve multi-objective optimization problems was 
proposed in the seventies. David Schaffer was the first 
to implement Vector Evaluated Genetic Algorithm 
(VEGA) [35] in the year 1984. There was lukewarm 
interest for a decade, but the major popularity of the 
field began in 1993 following a suggestion by David 
Goldberg based on the use of the non-domination [21] 
concept and a diversity- preserving mechanism. There 
are various multi-criteria EAs proposed so far, by 
different authors and good surveys are available in [40, 
41].

For our task we shall use the following algorithm.

Algorithm

1. g=1; External (g)=;

2. Initialize Population P(g);
3. Evaluate the P(g) by Objective Functions;
4.  Assign Fitness to P(g) Using Rank Based on 

Pareto Dominance
5. External (g)   Chromosomes Ranked as 1;
6. While ( g <= Specified_no_of_Generation) do
7. P’(g) Selection by Roulette Wheel Selection 

Schemes P(g);
8. P”(g) Single-Point Uniform Crossover and 

Mutation P’(g);
9. P”’(g) Insert/Remove Operation P”(g);
10. P(g+1) Replace (P(g), P”’(g));
11. Evaluate P(g+1) by Objective Functions;
12. Assign Fitness to P(g+1) Using Rank Based 

Pareto Dominance;
13. External (g+1)  [External (g) + 

Chromosome Ranked as One of P(g+1)];
14. g=g+1;
15. End while
16. Decode the Chromosomes Stored in External as 

an IF-THEN Rule

5. MOGA for DM tasks

5.1 MOGA for classification

As stated in Section-2, classification task has many 
criteria such as predictive accuracy, 
comprehensibility, and interestingness. These three 
are treated as multiple objectives of our mining 
scheme.  Let the symbols f1, f2, and f3 correspond to 
predictive accuracy; comprehensibility and rule 
interestingness (need to be maximized).

5.1.1 Experimental Details

Description of the Dataset

Simulation was performed using benchmark the zoo 
and nursery dataset obtained from the UCI machine 
repository (http://www.ics.uci.edu/). 

Zoo Data
The zoo dataset contains 101 instances and 18
attributes. Each instance corresponds to an animal. In 
the preprocessing phase the attribute containing the 
name of the animal was removed. The attributes are 
all categorical, namely hair(h), feathers(f), eggs(e), 
milk(m), predator(p), toothed(t), domestic(d), 
backbone(b), fins(fs), legs(l), tail(tl), catsize(c), 
airborne(a), aquatic(aq), breathes(br), venomous(v) 
and type(ty). Except type and legs, all other attributes 
are Boolean. The goal attributes are type 1 to 7. The 
type 1 has 41 records, type 2 has 20 records, type 3
has 5 records, type 4, 5, 6, & 7 has 13, 4, 8, 10
records respectively.

Nursery Data
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This dataset has 12960 records and nine attributes 
having categorical values.  The ninth attributes is 
treated as class attribute and there are five classes: 
not_recom (NR), recommended (R), very_recom (VR), 
priority (P), and spec_prior(SP). The attributes and 
corresponding values are listed in Table 1.  

Results
Experiments have been performed using MATLAB 5.3
on a Linux server. The following parameters are used 
shown in Table 2. 

P: population size
Pc : Probability of crossover
Pm  : probability of mutation
Rm : Removal operator
RI   : Insert Operator

For each of the datasets the simple genetic algorithm 
had 100 individuals in the population and was run for 
500 generations. The parameter values such as Pc, Pm, 
Rm, and Ri were sufficient to find some good 
individuals. The following computational protocols are 
used in the basic simple genetic algorithm as well as 
the proposed multi-objective genetic algorithm for rule 
generation. The data set is divided into two parts: 
training set and test set. Here we have used 30% for 
training set and the rest are test set. We represent the 
predicted class to all individuals of the population, 
which is never modified during the running of the 
algorithm. Hence, for each class we run the algorithms 
separately and get the corresponding rules.

Rules generated by MOGA have been compared with 
those of SGA and all rules are listed in the following 
table. Table 3 and 4 show the results generated by SGA 
and, MOGA respectively from zoo dataset. Table 3 has 
three columns namely class#, mined rules, and fitness 
value. Similarly, Table 4 has five columns which 
includes class#, mined rules, predictive accuracy, 
comprehensibility and interestingness measures. 

Tables 5 and 6 show the result generated by SGA and 
MOGA respectively from nursery dataset.  Table 5 has 
three columns namely class#, mined rules, and fitness 
value. Similarly, Table 6 has five columns which 
includes class#, mined rules, predictive accuracy, 
comprehensibility and interestingness measures. 

5.2 MOGA for Clustering

Conventional genetic algorithm based data clustering 
utilize a single criterion that may not confirm to the 
diverse shapes of the underlying data. This section 
provides a novel approach to data clustering based on 
the explicit optimization of a partitioning with respect 
to multiple complementary clustering objectives [5]. It 
has been shown that this approach may be more robust 
to the variety of cluster structures found in different 
data sets, and may be able to identify certain cluster 

structures that cannot be discovered by other 
methods. MOGA for data clustering uses two 
complementary objectives based on cluster 
compactness and connectedness. Let us define the 
objective functions separately.

Compactness
Cluster compactness can be measured by the overall 
deviation of a partitioning. This is simply computed 
as the overall summed distances between data items 
and their corresponding cluster centers as
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where S is the set of all clusters, k  is the centroid of 
cluster ck and d(..) is the choosen distance function 
(e.g. Euclidean distance). As an objective, overall 
deviation should be minimized. This criterion is 
similar to the popular criterion of intra-cluster 
variance, which squares the distance value d(..) and is 
more strongly biased towards spherically shaped 
clusters.

Connectedness
This measure evaluates the degree to which 
neighboring data points have been placed in the same 
cluster. It is computed as 
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nni(j) is the jth nearest neighbor of datum i and L is a 
parameter determining the number of neighbors that 
contributes to the connectivity measure. As an 
objective, connectivity should be minimized. After 
defining theses two objectives, then the algorithms 
that are defined in Section 4.2 can be applied to 
optimize them simultaneously.  The genetic operators 
such as crossover, mutation is the same as single 
objective genetic algorithm for data clustering.  

5.2.1 Experimental Details

Parameters taken for simulations are 8.06.0  c
and 01.0001.0  m . We have carried out 

extensive simulation using labeled data sets for easy 
validation of our results. Table 7 shows the results 
obtained from both SGA based clustering and 
proposed MOGA based clustering.

Population size was taken as 200. Other parameters 
like selection, crossover and mutation were used for 
the simulation. MOGA based clustering generate 
solutions that are comparable or better than the 
simple genetic algorithm. In the case of IRIS data set 
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both the connectivity and compactness achieved a near 
optimal solution, whereas in the other two datasets 
named as wine and WBCD the results of both the 
objectives were very much conflicting to each other. 

As expected the computational time requirement 
for MOGA is higher than the single objective 
based ones.   

6. Conclusions and Discussion

In this paper we have discussed the use of multi-
objective genetic algorithms for classification and 
clustering. In clustering, it has been demonstrated that 
MOGA based clustering shows robustness over the 
existing single objective ones. Finding more objectives 
that are hidden in cluster analysis as well as without 
using apriori knowledge of k-clusters is a promising 
research direction. The scalability, which is 
encountered in MOGA based rule mining from large 
databases/ data warehouses, is another major research 
area. Though MOGA is discussed for two tasks of data 
mining, it can be extended to the task like sequential 
pattern analysis and data visualization of data mining.
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Figure 6 Trade off between time and space

Figure 3  Alippi and Cucchiara’s asexual crossover
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Figure 1:  Chromosomes representing the clustering 
{{O1, O2, O4}, {O3, O5, O6}} for the encoding 

schemes: (a) group number and (b) matrix
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Figure 4 Bezdek et al.’s 2- point matrix crossover

Figure 5: Column mutation
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Table 3:  Rules Generated by SGA from Zoo Dataset Table 4: Rules Generated by MOGA from Zoo Dataset

Table 5: Rules Generated by SGA from Nursery Dataset

Table 6: Rules Generated by MOGA from Nursery Dataset

Table 7: Results obtained from SGA and MOGA 
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