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Abstract: In this work we look for a general neural network model that resembles the interactions between glucose 

concentration levels and amount of insulin injected in the bodies of diabetics. We use real data for 70 different patients of 

diabetics and build on it our model.  Two types of neural networks (NN’s) are experimented  in building that model; the first 

type is called the Levenberg-Marquardt (LM) training algorithm of multilayer feed forward neural network (NN), the other 

one is based on Radial Basis Function (RBF) neural network.  We do comparisons between the two models based on their 

performance.  The design stages mainly consist of training, testing, and validation.  A linear regression between the output of 

the multi-layer feed forward neural network trained by LM algorithm (abbreviated by LM NN) and the actual outputs shows 

that the LM NN is a better model.  This model can be potentially  used to build a theoretical general regulator controller for 

insulin injections and, hence, can reflect an idea about the types and amounts of insulin required for patients.  
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1. Introduction 
 

Diabetes is a widespread chronic illness that 

accounts for a large part of the health care budget.  

It affects approximately one hundred million 

people world wide [1] and may lead to a variety of 

vascular, neurological or metabolic complications. 

 

Diabetes and complications associated with it can 

be viewed as a partial or total failure of one or 

more intrinsic therapeutic feedback loops. In a 

healthy person the relationship established 

between glucose level and insulin secretion is an 

effective feedback control loop. Increased blood 

glucose level (the controlled variable) results in 

the production of the hormone insulin by the 

pancreas (the controller). This insulin reduces 

blood glucose from its elevated level. Diabetic 

patient has not this inter-relationship or it does not 

work as it does in healthy people. 
 

In practice, the full picture is more complex and 

the diabetic patient needs to be regarded as a 

multi-input/multi-output physiological system 

which contains several controllable and 

measurable variables as well as other factors 

which are not directly observable. The patient’s  

diet (the carbohydrate content of which will 

directly elevate blood glucose level), hormones 

(gastrointestinal, glucagons, …etc), the physical 

effort exerted, the amount of insulin delivered, 

and other factors [2] can be considered to be 

control variables which need to be adjusted in 

order to maintain homeostasis within the human 

organism. Obviously, the manipulation of all 

variables that affect the dynamics of diabetes is 

cumbersome.  

 

1.1 Mathematical Models of Glucose/Insulin 

Dynamics 
 

Mathematical models have provided  one mean of 

understanding diabetes dynamics. There are 

various models based on glucose and insulin 

distributions, and those models have been used to 

explain glucose /insulin interaction .  All these 

models are valid  under certain conditions and 

assumptions [3]-[9]. These models represent a 

range of approaches, including linear [2],[3], 

nonlinear [4],[5], probabilistic [6], compartmental 

[7], non-compartmental [8], and parametric 

models [9].  Although these models may be useful 

in a research setting, they all have limitations in 

predicting blood glucose in real-time clinical 

situations because of the inherent requirement of 

frequently updated information about the models’ 

variables like glucose loads and insulin 

availability.  For example, glucose challenges to 

the body, such as those resulting from a meal, are 

important glucose sources in models, but are not 

conveniently measurable and must instead be 
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considered as unknown disturbances. As another 

example, the timing and amount of subcutaneous 

insulin injections are known to the patient, but the 

resulting vascular availability of insulin is often 

variable, depending on factors such as the insulin 

dose and delivery site. Since frequent insulin 

determinations are not practical for routine 

management, only estimates of vascular insulin 

concentrations can be incorporated in models 

when applied in an actual clinical setting. In the 

absence of accurate, frequently updated 

information about glucose loads and insulin 

concentration, these conventional models can only 

be marginally effective in real time at reliably 

predicting future blood glucose values [10]. Given 

this situation, if continuous or very frequent blood 

glucose monitoring is available, recent and past 

glucose values may be exploited as an alternative 

to the use of conventional models to describe 

blood glucose dynamics. 

  

The features of data that can be used for such 

studies are sometimes based on individual blood 

glucose values from a patient or a group of 

patients, while in many other studies statistical 

averages of repeated challenges for a given  

patient a or group of patients are used. 

Furthermore, blood glucose is sampled frequently 

enough to capture a detailed record of excursions. 

The monitoring period for a given individual is 

extended over a long time period (several weeks). 

Full information about external factors such as 

meals, insulin injections and the type, exercise, 

etc.. that cause blood glucose perturbations is also 

recorded. 
 

2.   The Neural Based Model 
 

Feed-forward neural networks have been 

extensively used to solve many kinds of problems.  

It is being applied in a wide range of areas 

covering subjects such as prediction of temporal 

series, structure prediction of proteins, and speech 

recognition.  One of  the fundamental properties 

making these networks useful is their capability to 

learn from data. Through synaptic modifications, 

the neural network is capable of obtaining a new 

structure of internal connections that is 

appropriate for solving a determined task. In this 

work, we use two different types of neural 

networks; the LM NN model and the radial basis 

function NN  model. Although, both of them are 

feed forward types of neural networks, they 

fundamentally differ in the way training is 

implemented. LM NN  model is a feed forward 

model consisting of two layers. Its learning 

strategy starts with incremental error back 

propagation algorithm and gradually switches to 

conjugate gradient-based back propagation  for the 

final convergence phase [11 ].  This technique is 

known for fast convergence toward “closest” local 

minimum and can escape shallow local minima. 

On other hand, the Radial Basis Function Neural 

Network (RBF NN)  has also a feed forward 

structure consisting of a single hidden layer of   J  

locally tuned units which are fully interconnected 

to an output layer L linear units .  Each hidden 

unit output is obtained by calculating the 

“closeness” of the input to a multi-dimensional 

point (Mj) associated to every neuron (unit) J . 

Here, each neuron has its unique multi-

dimensional point. The output of the hidden unit 

(neuron) resulting for an input x is given by: 

 

Zj(x)=K(||x-Mj||/σ
2
j )    

   (1) 

    

where K is strictly positive radial symmetric 

function (kernel) with a unique maximum at its 

center Mj and which drops off rapidly to zero 

away from the center. The parameter σ j is the 

width of the receptive field in the input space for 

unit J. This implies that the  Zj has an appreciable 

value only when the “distance” ||x-Mj|| is smaller 

than the width σ j . Given an input vector x, the 

output of the RBF network is the L-dimensional 

activity vector whose lth component is given by 
                              L 

Yl(x)=Σ w1jZj(x)     

   (2)   
                           j=1 

  where w1j  is the weight  connecting the hidden 

layer with the output layer, see Figure (1) please. 

 

The LM NN model, see Figure (2) please, is a 

regular back propagation model but with merits 

added to accelerate the learning process as all 

shown in [11,12].  
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3. Simulations with Neural Networks 
 

In our simulations, we used  a set of data for 70 

different patients [7].  Sample of the data used is 

shown in Table (1). The terms; STI stands for 

short term insulin , MTI for midterm insulin, LTI 

for long term insulin. In the columns for exercise 

and meal, “1” stands for “yes” and “0” stands for 

“no”. The terms PGL stands for present glucose 

level and NGL stands for next glucose level.  The 

period of time is the minutes  between two 

consecutive measurements  of the glucose level in 

blood. However, we normalized data before 

training ending up with 0 mean and unity standard 

deviation. We did spectral component analysis 

and eliminated all components less than 0.1% of  

the variations. The components of a training 

vector in our data were the PGL, STI ,  MTI,  time 

period, and meal. We eliminated the all “1” 

exercise input, the all “0”  postprandial input, and 

the all “0” LTI input.  These inputs have no effect 

since they do  not contribute to the variation of the 

output as they are always kept constant to a single 

value. The single output of our model has a target 

of the NGL. This NGL is measured after the given 

time period of time. We had data for more than 70 

patients with  total of more than 30,000  samples 

of input/target training pairs. The training process 

itself is equivalent to a nonlinear regression 

process between the normalized inputs (spectral 

components) and the normalized targets. When 

training is complete, the output of the neural 

network is un-normalized in a reverse process for 

the principal components normalization stage that 

was implemented before training. The un-

normalized data is then  passed through a linear 

regression stage. The linear regression is 

implemented between the un-normalized outputs 

of the neural network and the actual targets taken 

from the data files (NGL).  The linear regression 

reflects the degree of accuracy and correctness of 

the neural network predictions. 

 

The training data were accessed as follows; for 

every consecutive four training points, the first 

and third point are used for training, the second 

point is used for testing, and the fourth point is 

used for validation. Then, the process is repeated 

for the whole set of data. Of course, during testing 

and validation there is no learning (training) , only 

nonlinear regression through the neural network 

followed by a  linear regression stage between 

targets and un-normalized outputs to measure 

accuracy of  prediction.     

 

It should be mentioned here that what is being 

done in this work is some kind of system 

identification [13],[14]. Our ultimate goal is to 

find some general parameters that govern the 

behavior  of the glucose levels in diabetics. When 

some quantity of medication is investigated its 

crucial to search for a general theoretical model 

that can be used to help in testing  the effect of 

that medication. Models such as the ones we 

present here can be used in giving a theoretical 

hint about the effect of the insulin in diabetics. 

These models can be further used in building 

insulin controllers that automatically insert the 

proper amount of insulin and work as regulator 

control for a required level of glucose in blood.           
 

3.1   Simulations with RBF NN Model 
 

The RBF model we explained earlier is used to 

model the data of the 70 patients. This model  

architecture has one neuron at the output layer. 

The number of neurons (units) at hidden layer 

starts with one, then two , and goes up as long as 

the error values did not reach the given criteria.  

The RBF NN  number of hidden neurons that we 

settled on is equal to the size of the training set 

which happened to be 1600 points (excluding 

points used for testing and validation). The 

parameters that govern  training here are the 

numbers of hidden units, the location of  them and 

their associated widths. Generally speaking, there 

is no formal method for specifying the required 

number of hidden units. The width we used was 

very small (around 0.005).  The center of the 

RBF’s  is equal to the coordinates of the training 

vector. This  in order to achieve smoother 

interpolation of points. However, this resulted in 

the high number of neurons at hidden layer.  

Training of RBF NN is based on gradient descent 

methods [15 ], [16 ]. The learning rule adjusts the 

weights that connect the hidden units with the 

output neuron. As shown in Figure (3), the 

training process was slow at the beginning then 

went down  quickly at last stages.   Although, the 

training error is  very low and close to preset goal,  

the linear regression for the testing and validation 

of data show  that the RBF network  could not 

capture well the PGL/NGL dynamics. The 

performance at testing and validation points is 
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very unacceptable, see Figures (4), (5), (6) and 

(7).  It is clear from those figures that the RBF 

network has good performance only for the group 

of data used in training.  There is no interpolation 

neither extrapolation abilities demonstrated by the 

linear regression figures.   The model we have 

here could not learn to predict correctly the next 

values of glucose levels (NGL). As a result of the 

previous experiments, RBF NN’s  are only good 

“memorizers” since it captured well the training 

data only as shown in Figure(3).          

 

    
 

 

 

 

 

 

 

 

 

 

 

Figure 1:  A scheme of feed forward Neural Network  (NN)  

using Radial Basis Functions (RBF) at the hidden layer. 

 

 

 

Figure2. A scheme of feed forward Neural Network  (NN)  

that could be used with Levenberg-Marquardt (LM) training 

algorithm. 

 
 

3.2 Simulations with the Levenberg-

Marquardt (LM) NN  Model 

 

In this model we used 5 hidden units and one 

output unit.  Adaptive parameters are used in 

calculating adjustments in weights and biases 

[15][16 ]. Error back propagation algorithm in 

conjunction with Levenberg-Marquardt (LM) 

optimization [ 11] is used. This usually results in 

fast  but memory consuming training. Figure (8) 

shows graphs for training, testing, and validation. 

The training data is prepared in a manner similar 

to the previous method. The testing and the 

validation  points in the graph are done by passing 

the inputs through the neural network only 

without any modifications for weights.  The mean 

square error , which is the performance criteria, is 

calculated according to the difference between the 

target and the output of the neural network. It is 

clear from Figure(8) as training error goes down, 

the testing and validation error also goes down. 

Figure (9) shows a linear regression  for the whole 

set of data. Although, around half of  the data is 

only used in the training, the linear regression for 

the whole set of data is excellent.  Also, note that, 

the linear regression is an outside process  used 

only to map the normalized output of the neural 

network with the actual target data. However, the 

whole process of testing and validation is based on 

non linear regression. Neural networks are highly 

nonlinear by nature. The results demonstrate the 

ability of this type of networks to model the whole 

set of data. The neural network, here, could 

capture, identify, and generalize the 

insulin/glucose dynamics for the samples of the  

70 patients with high accuracy. The normalization 

process for the raw inputs/targets has great effect 

on preparing the data to be suitable for the 

training.  Without this normalization training the 

neural networks would have been  very slow. 

 
 

4.   Conclusions and Discussions 
 

RBF networks have been applied with success to 

function approximation problems [17 ]. That was 

what gave us motivation to use RBF networks in 

modeling the glucose/insulin dynamics. However, 

on difficult approximation problems, RBF need 

additional stages other than the ones we used in 

this work. A stage for assigning the centers of the 

radial basis function is needed, other than  the 

uniform distribution of centers according to the 

training vectors that  we used. Clustering 

techniques [ 18] can be used to find regions where 

data is concentrated and, therefore, use narrower 

width functions. RBF NN also requires much 

more data than the ones used in our work to 

achieve similar performance to that the LM NN 

model has achieved. The nature of the RBF 
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networks is “local”. By this we mean that the 

network only responds for particular inputs that 

are within the radial basis function active region. 

Values out of the “specific radial basis function 

region” will not stimulate that function. Therefore, 

RBF networks are not that sensitive to history or 

previous  inputs. However, preprocessing is 

crucial to set up the RBF NN. We do admit that 

more advanced techniques to estimate the centers 

of the RBF’s and their spreads would probably 

upgrade the RBF NN’s performance. The  LM 

NN, on the other hand, adjusts all the parameters 

of the network at every training sample and hence, 

all parameters of the network contribute to the 

generation of the output concurrently. This would 

give LM NN more ability to create a global fit for 

data.   Moreover, this collective behavior reduces 

the size of the network to much smaller size than 

that for RBF NN. As a result, it is more 

advantageous to use LM NN when data is 

“expensive” (i.e. not abundant ) and when data is 

complex. While it is advised to use RBF NN when 

the data is cheap or plentiful like in adaptive 

control or some signal processing applications 

[19].  RBF networks have the advantage of being 

fast in training especially when number of radial 

basis functions needed is small. As explained 

earlier, RBF NN has a single stage of adjusting the 

weights if the centers of the radial basis functions 

is assigned. LM NN training process is more 

complicated and time consuming. 

 

If we try to relate the results we have with the 

nature of data we are dealing with, it is fair to 

conclude that the nature of data we have is not an 

RBF NN type of data.  The target for training, 

which is the NLG,  is not only a function of 

current state of patient and of the amount and type 

of insulin she/he just has, but also it is  dependent 

on previous states of the patient and on previous 

medications she/he already has. The LM NN 

model is a successful method to identify and 

capture those dynamics. Some other techniques 

for modeling are based some conceptual 

mathematical modeling followed by standard 

numerical optimization  to approximate the model 

parameters (least squares method for example). 

However, in this paper we are more interested in 

Artificial Intelligence-based models and, in 

particular, in Neural Networks (NN’s). Moreover, 

we presented two techniques of NN, one is more 

dependent on a local response of certain neurons 

(the hidden neuron with the RBF that responds 

primarily to  specific inputs ) and the other (LM 

NN) has a more global strategy at which all 

hidden neurons participate in generating the 

output for some input or stimuli.   As a matter of 

fact, NN proved to be a potentially good modeling 

tool for such type of problems, and that is the 

bottom line for this work. 

 

Future work will include enhancing the estimation 

techniques for the parameters of the RBF NN, in 

addition to  designing neural based  controllers to 

regulate the level of glucose in blood based on 

those NN plant models. We hope that these neural 

network based techniques will add a little 

knowledge toward the understanding of 

insulin/glucose dynamics.     
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Figure 3: The error versus learning epochs for 

RBF neural network. 

 

 
 

Figure 4: The Testing output/target linear 

regression results for RBF network. 

 

 
 

Figure 5: The training output /target linear 

regression results for RBF neural network. 

 

 
 

Figure 6: The validation output/target linear 

regression results for the RBF neural network. 

 

 

 
 

 

Figure 7: The total data set output/target linear 

regression results for the RBF neural network. 

 

 

 
 

Figure 8: The error versus 

Training/Validation/Testing epochs for 

Levenberg-Marquardt neural network. 
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Figure 9:  The output /target  linear regression 

results for Levenberg-Marquardt neural network. 

 
 

 

PGL 

mg/dL 

STI 

U 

MTI 

U 

LTI 

U 
Exercise Meal Postprandial 

Time period   

(minutes ) 

NGL 

mg/dL 

100 9 13 0 1 0 0 478 119 

119 7 0 0 1 1 0 343 123 

123 0 0 0 1 1 0 524 216 

216 12 13 0 1 1 0 561 211 

211 7 0 0 1 1 0 869 257 

257 11 13 0 1 0 0 600 129 

129 7 0 0 1 1 0 867 239 

239 14 14 0 1 1 0 558 129 

129 0 0 0 1 1 0 299 340 

 

Table 1: Sample of patients data used during the modeling. 


